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The shear viscosity coefficient and the corresponding relaxation time for causal dissipative hydro-
dynamics are calculated based on the microscopic formula proposed in T. Koide and T. Kodama [Phys.
Rev. E 78, 051107 (2008)]. Here, the exact formula is transformed into a more compact form and applied
to evaluate these transport coefficients in the chiral perturbation theory and perturbative QCD. It is shown
that in the leading order calculation, the causal shear viscosity coefficient 7 reduces to that of the ordinary
Green-Kubo-Nakano formula, and the relaxation time 7, is related to n and pressure P by a simple

relationship, 7., = n/P.
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The study of dissipative processes in relativistic heavy-
ion collisions is now one of the important topics to clarify
quantitatively how closely the matter created there behaves
as an ideal fluid. The proper concept of relativistic dissi-
pative hydrodynamics is, however, not trivial at all. It is by
now known that a naive covariant extension of the Navier-
Stokes equation leads to the problem of relativistic acau-
sality and instabilities [1].

An essential key to this question is the presence of
memory effect characterized by a finite relaxation time in
the definition of irreversible currents [2]. Consequently, in
a relativistic regime, any fluid becomes non-Newtonian,
that is, the irreversible current is not simply proportional to
thermodynamic forces. We refer to those theories which
incorporate this effect as the causal dissipative hydrody-
namics (CDH).

Similarly to equation of states, transport coefficients
reflect the properties of the matter. These are inputs for
hydrodynamic modelings and should be determined from a
microscopic theory. So far, there are mainly two ap-
proaches to estimate these coefficients of CDH. One is
the kinetic approach based on the Boltzmann equation
[3,4]. The other is the calculation from a duality assuming
the AdS/CFT (Anti-de Sitter space/ conformal field theory)
correspondence [5,6]. However, the applicability of these
approaches is not obvious for the physics of heavy-ion
collisions. The kinetic approach is only applicable for
rarefied gases where the Boltzmann-Grad limit is satisfied.
The AdS/CFT approach predicts the behavior of a matter
described by a conformal field theory in its the strong
coupling limit, but QCD is obviously not a conformal
theory.

The Green-Kubo-Nakano (GKN) formula is another
possibility which is used to evaluate these transport coef-

0031-9007/09/103(5)/052301(4)

052301-1

PACS numbers: 25.75.—q, 24.10.Nz, 47.75.4+f

ficients in terms of microscopic correlation functions.
However, for our purpose, there exist the following prob-
lems. One is that, in this approach, the relaxation time has
not been expressed with correlation functions. Further-
more, it is not obvious whether the GKN formula for the
shear viscosity coefficient is applicable when the system
exhibits a non-Newtonian nature of irreversible currents.
Usually, Newtonian nature is assumed in the derivation of
the GKN formula but, as mentioned above, this is exactly
the key question for the case of a relativistic fluid [7,8].
More precisely, the shear viscosity coefficient appears as a
phenomenological parameter, that is, the diffusion constant
for transverse momentum via a ratio to entropy density s in
the phenomenological Langevin approach. However, this
proportionality to the entropy density is not always true
and depends on its definition from a microscopic theory.

Another important point is that the hydrodynamic shear
viscosity, for example, appears in a thermal relaxation
process which is not a response of the system to an exter-
nal force, but is rather a response to the inhomogeneity of
the velocity field, that is, the change in boundary con-
ditions. Thus, a direct application of the traditional argu-
ment of the linear response theory for the calculation of the
shear viscosity is not straightforward. As a matter of fact,
the GKN formula of the shear viscosity is derived by using,
for example, the nonequilibrium statistical operator
method [9].

Recently, the microscopic formulae to calculate the
transport coefficients of CDH was derived by use of the
projection operator method [7,8,10]. Although this ap-
proach is shown to be very powerful, the results obtained
so far are yet too formal for the practical applications. The
aim of the present work is twofold: one is to reduce the
formula obtained in [7,8] into a more compact form, and
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the other is to apply it to the hadronic matter and quark-
gluon plasma (QGP) to investigate the temperature depen-
dence of the causal shear viscosity coefficient n and the
relaxation time 7.

So far, 7. has not been discussed enough compared to 7,
but some crucial questions depend on the precise behavior
of the relaxation time. For example, the behavior of 7 is
directly related to the stability of relativistic fluids as
discussed in [1]. Another question is the value of n/s
obtained form the analysis of experimental data seems
very small, as close, if not smaller than, to the lower bound
1/47 predicted by the AdS/CFT correspondence.
However, even if 1/s is not so small, the fluid can behave
as an ideal fluid when 7, is sufficiently large. Thus, to
know the precise value of 7 is fundamental.

For simplicity, let us consider a system with shear flow,
where the fluid velocity points to the x direction with finite
velocity gradient in the y direction. We further assume that
the evolution equation of the shear viscosity is approxi-
mately given by the evolution of the two variables, 7°* and
T%*. Correspondingly, we will employ the formula of N =
2 form given in Sec. VIII of [8], where N is the dimension
of the projected space. The exact time evolution of spatial,
off-diagonal components of energy-momentum tensor
T#?(k, r) in the momentum representation (Fourier trans-
form) is formally expressed as

8,17 (ky, t) = —ik,Ry T**(ky, 1)

- Lt dTEQQ(ky, T)Tyx(ky, r— T) + fk),(t))
M

where Ry, = (T (ky), Tyx(—ky))/(Tox(ky), TO)‘(—ky)), and
the inner product (X, Y) represents Kubo’s canonical cor-
relation (X, Y) = fg dAB ' Tt peqe*? Xe Y], Here, H
is the Hamiltonian, and S is the inverse of temperature
1/T. The memory function Z,(k,, 7) is defined in Eq. (78)
of [8]. The last term of the Eq. (1) is often called the noise
term, and related to the memory term through the
fluctuation-dissipation theorem of the second kind [7,8].
To break the time-reversal symmetry, we introduce the
time-convolutionless (TCL) approximation [7,8],

1
8,1 (ky, 1) = —iky(& + PRy u*(ky, 1) — — T (k,, 1),
¥ T K, )

(2
where we have introduced a function related to the relaxa-
tion time ’Tk_‘_l = [ drExn(ky, 7), and &, P, and u are the

energy density, pressure, and fluid velocity, respectively.
The noise term is not necessary for the present discussion
and dropped out. The TCL approximation is equivalent to
assume the exponential ansatz for the memory of 7°*(k,, ).
It should be emphasized that, even after the TCL approxi-
mation, the hysteresis of 7% is still reserved in its time
evolution equation, and this corresponds exactly to the

memory effect in the usual CDH [2]. In this derivation,
we have used the following replacement T% =
(e + P)u*(ky, t), which is justified near the local rest
frame.

On the other hand, the linearized phenomenological
equation for the shear viscosity defined by projection to
the traceless part, " =L1(A*CAYP + AHBAYY —
ZA#YAYP)T, 5 with ARY = g — yky” s given by

0
Twa'n’yx(ky) + 77.yx(ky) = _n(lky)ux(ky) (3)

at the local rest frame. Comparing the above equation with
Eq. (2), we identify the n and 7, [8]:

T, = lim7, n = klimo(s + P)Ry, 7. 4

ky—0

The memory function can be cast into a simple form in
the low momentum limit:

— sX%(ky, 5)

— 1
e AT AL 5)
y)

where XL, (k,, 5) is the Laplace transform with respect to
of the following correlation function,

(Tyx(ky’ t)) Tyx(_kyl O))
(T (ky, 0), T*(=k,, 0))’

XZZ(ky: t) = (6)

Substituting this equation into the definitions (4), we obtain
T» = X5(0,0) and 7 = (g + P)RyX5(0,0).

For later convenience, we re-express the correlation
function X%,(0,0) with the definition of the GKN shear
viscosity coefficient [9] as

x5(0,0) = 7o [ [#xmm o m0o] " @

where

1 t
nGKN:_E[d3X]7wdtl

X[hdﬂﬂmuﬁWMQJMJmB=QLZ%

®)

Here the suffix ret denotes the retarded Green function, and
there is difference by factor 2 from [9] because of the
difference of the definition.

Finally,  and 7, are given by

n _ TIGKN )
Ble +P) g% [ dPx(J¥(x,0), J*(0,0))’

Tr _ TIGKN
ey v e=reny we ) M

where we have introduced the energy current, J#(x, 1) =
u, T (x, t) which is TO#(x, ) at the local rest frame. Note
that /[ B(e + P)] is nothing but n/s at vanishing chemi-
cal potential. These expressions are still most general ones
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within a framework where the hydrodynamic description is
meaningful and are the first main results of the present
work.

Concerning the causality problem in CDH, we introduce
aratio n/[7,(g + P)], which is, in our case, given by Ry
itself. Note that the propagation speed of signal should be
slower than the speed of light. For the (3 + 1)-dimensional
viscous fluid to be causal in the shear channel, the follow-
ing relation should be satisfied [1],

n 3
et p) = g1 (11

where c; is the ordinary sound velocity ¢ = dP/de. In
particular, ¢2 is 1/3 in the massless ideal gas case, and this
n — 7, ration should be smaller than 1/2.

Now we apply our formula to QCD-related problems. In
the hadronic phase at low baryon density and high tem-
perature, the dominant behavior comes from the pions. The
interaction of pions can well be described by the chiral
perturbation theory which is a low energy effective theory
of QCD. To estimate the GKN shear viscosity coefficient
ngkn> We adapt the leading order result given in [11]. At
the high temperature regime far above the deconfinement
scale, we assume that the dominant behavior of the QGP is
given by gluon, and use nggy obtained to the leading order
in the perturbative QCD (pQCD) calculation for Ny = 0 in
[12]. We take the running coupling constant to have the
same parametrization as [13].

In order to estimate n and 7, to the leading order in
couplings, it is enough to calculate the fluctuations of J*
and 7" to the lowest order. Then, we obtain

ey e & [P
[ Px 0, 7 0) = f w1+ n,)
e+ P
= , (12)
B
, g [&p )
Px (™ (x), 7 (0)) = T
f 15) @n) BE2
1
X (E——i- B+ np))np
)
P
=—, (13)
B
where n, = (¢#£» — 1)7! is the Bose-Einstein distribution

function. The statistical factor g is 3 for pions and 16 for
gluons. In the derivation of Eq. (13), we have subtracted
the vacuum contribution. Here, € and P are the energy
density and pressure of the ideal Bose gas, respectively.

By substituting them into the definitions Egs. (9) and
(10), we obtain the leading order results. In this approxi-
mation, we found that the causal shear viscosity coefficient
is given by 7 = mgkn, and the relaxation time (10) reduces
to

T» = Nakn/P = n/P. (14)

See [11,13,14] for the behavior of ngkn-

We show the temperature dependence of 7. to B ratio in
Fig. 1. The behavior is very similar to that of 7/s: a
decreasing function of temperature in the hadron phase
and an increasing one in the QGP phase, exhibiting mini-
mum near the phase transition temperature 7. The dashed
line denotes the prediction from the AdS/CFT correspon-
dence 7,/B=(2—1n2)/2m) for N =4 SYM [6].
However, because of the weak temperature dependence
of 7,./B in the QGP phase, 7, itself is a decreasing
function for both of the hadron and QGP phases and
show discontinuity near 7, that is, 7, becomes minimum
(maximum) in the hadron (QGP) side near T,. Thus, the
behavior of the shear viscosity is insensitive for the rapid
change of the fluid velocity above T, because of the large
7., meanwhile, it is more sensitive below 7. In this sense,
the matter created in relativistic heavy-ion collisions can
be close to the ideal fluid in two different ways. One is
because of the small 7 and 7,. which may be realized in the
hadron phase, and the other is the small n but large 7, in
the QGP phase.

The relaxation time is calculated also from the relativ-
istic Boltzmann equation using Grad’s moment method
with the 14-moment approximation [4,15]. In order to
compare with our result, the temperature dependence of
7, to m ratio in the unit of pressure P is shown in Fig. 2.
The solid line denotes the behavior of our result, which
should be one in our leading order calculation. The dot-
dashed line denotes the result from the AdS/CFT corre-
spondence, (2 — In2)/2 [6]. The dashed line represents the
result obtained from the moment method for the pion
(Bose-Einstein) gas without phase transition [4]. This fig-
ure shows that our theory gives a different result from the
14-moment calculation. In the Navier-Stokes limit
(Newtonian fluid), it is known that the momentum method
with the 13-moment approximation and the famous
Chapman-Enskog procedure are consistent for the shear
viscosity. However, 7. requires expansions in higher mo-
ments and, to see the relation of our formula and the
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FIG. 1. The temperature dependence of the relaxation time to
B ratio with 8 = 1/T. The solid and dashed lines represent our
result and that from AdS/CFT correspondence, respectively.
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FIG. 2. The temperature dependence of 7,P/n. The solid,
dashed and dot-dashed lines correspond to the result of our
formula, the moment method and AdS/CFT correspondence,
respectively.

moment method, a more careful comparison should be
done. It is also worth mentioning that there is a attempt
to calculate these coefficients without using the moment
method [16].

As the AdS/CFT correspondence predicts that the mini-
mum of yggn/s has a lower bound 1/(47) [5], our n/s
and 7, would have a lower bound, unless the fluctuation of
mH¥ diverges. As a matter of fact, to be consistent with the
causality condition (11), 7, is somehow correlated with 7,
and 7,/ cannot be much smaller than n/[B(s + P)]. In
Fig. 3, we show the temperature dependence of the n-7,
ratio. In our leading order calculation, this ratio is nothing
but ﬁ = (STPP)’ and shows a nontrivial temperature

dependence only at lower temperature than the pion mass
and finally converges to the massless ideal gas limit 1/4
where € = 3P. One can easily see that the result satisfies
the relativistic causality condition (11). It should be em-
phasized that relativistic fluids become unstable if the
causality condition is not satisfied [1]. To see the consis-
tency of CDH, it is necessary to investigate this ratio more
carefully.

In summary, we proposed the compact definitions of the
transport coefficients of CDH, and calculated them in the
chiral perturbation theory and pQCD. We found that, in the
leading order calculation, the causal shear viscosity coef-
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FIG. 3. The temperature dependence of the n-7, ratio.

ficient 7 is reduced to that of the GKN shear viscosity
coefficient nggn. Although intuitive, this result is not
trivial a priori because the irreversible current is not simply
proportional to the thermodynamic force in CDH. In fact,
7, does not vanish in our calculation, and there is a simple
relationship, 7, = n/P. This relation is not the same as
that obtained in the 14-moment calculation, and the physi-
cal origin of this discrepancy should be clarified. So far, the
improvements of the moment method has been discussed
in diverse ways [17]. Our result may give a milestone in
such a development.

It is thus very interesting to ask how these are modified
when the calculation is implemented beyond the leading
order. The simple relationship obtained here would not be
satisfied in the strong coupling limit. In fact, from AdS/
CFT results, we can show 1/7, = Ts/(4 — 21n2), which
is larger than the equation of state of the massless ideal
fluid, P = T's/4, thatis, P # 5/, as was shown in Fig. 2.
Thus, we expect that the simple relation 7 = nggy and/or
7, = n/P calculated from the exact formulae (9) and (10)
would acquire a nontrivial temperature dependence once
going beyond the leading order result and in the strong
coupling limit.
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