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We study the dual quark condensate as a signal for the confinement-deconfinement phase transition of

QCD. This order parameter for center symmetry has been defined recently by Bilgici et al. within the

framework of lattice QCD. In this work we determine the ordinary and the dual quark condensate with

functional methods using a formulation of the Dyson-Schwinger equations for the quark propagator on a

torus. The temperature dependence of these condensates serves to investigate the interplay between the

chiral and deconfinement transitions of quenched QCD.
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Introduction.—The chiral and deconfinement transition
of QCD is a subject of continuous interest. One of the
unsolved problems is the question of an underlying mecha-
nism relating both phenomena. Strictly speaking chiral and
deconfinement phase transitions only occur in opposite
sectors of the theory. The chiral condensate acts as an order
parameter for the chiral phase transition at vanishing quark
masses, m ¼ 0, whereas the Polyakov loop signals center
symmetry breaking at the deconfinement transition for
m ! 1. At intermediate masses both transitions develop
a fascinating interplay [1], which is not yet understood in
detail. Nonperturbative methods such as lattice gauge the-
ory or functional methods are needed to explore this issue.

A recent development that sheds light on this connection
is the investigation of spectral sums of the Dirac propagator
and their behavior under center transformations. Initiated
by a work of Gattringer [2], spectral sums have been
explored in Refs. [3–6]. In particular it has been shown
that the quark confinement mechanism is entirely encoded
in the low lying spectral modes of the Dirac operator [6],
which are also responsible for chiral symmetry breaking
via the celebrated Casher-Banks relation. The spectral
sums constitute order parameters for the deconfinement
transition of QCD [2,6].

In general, order parameters for deconfinement are not
easily accessible by functional methods. In [7] a method
has been developed to determine the Polyakov-loop poten-
tial from the effective action, whereas in [8] the analytic
structure of the quark propagator has been used to distin-
guish between the confined and deconfined phases. In this
Letter we report on a calculation of another order parame-
ter for deconfinement, the dual quark condensate or
‘‘dressed Polyakov loop’’ [5], with functional methods.

This dual condensate �1 is defined by the Fourier trans-
form

�1 ¼ �
Z 2�

0

d’

2�
e�i’h �c c i’ (1)

of the ordinary quark condensate h �c c i’ evaluated using

Uð1Þ-valued boundary conditions with angle ’ in the
temporal direction of Euclidean, quenched QCD. Note
that the usual antiperiodic boundary conditions for fermi-
ons require’ ¼ �, whereas’ ¼ 0 corresponds to periodic
boundary conditions; here we vary ’ in the interval [0,
2�]. In order to explain why the quantity �1 is of consid-
erable interest we note that the ’-dependent quark con-
densate h �c c i’ can be represented by a sum over all

possible closed chains of link variables, i.e., closed loops
l, on a lattice. One obtains

h �c c i’ ¼ X
l

ei’nðlÞ

mjlj UðlÞ; (2)

where UðlÞ denotes the closed chains of links including
some sign and normalization factors; see [5] for details.
Each loop consists of jlj links and is weighted with the
corresponding power of the inverse quark mass m. Each
time such a closed loop winds around the temporal direc-
tion of the lattice it picks up a factor e�i’ from the
Uð1Þ-valued boundary condition introduced above. This

leads to a weighting ei’nðlÞ, where nðlÞ is the winding
number of a given loop l. The dressed Polyakov loop �1,
Eq. (1), projects out loops with nðlÞ ¼ 1. It transforms
under center transformation in the same way as the con-
ventional Polyakov loop [9] and is therefore an order
parameter for the deconfinement transition. The numerical
agreement between the dressed and conventional Polyakov
loop has been established for gauge groups SUð3Þ [10] and,
remarkably, also for the centerless Gð2Þ [11].
In this work we determine the dual quark condensate

from the Dyson-Schwinger equations (DSEs) of Landau
gauge QCD at finite temperature [12]. However, wewish to
point out that our method is sufficiently general to be of
equal use in other functional approaches as, e.g., the func-
tional renormalization group [13]. We evaluate the ordi-
nary and the dual quark condensate from the trace of the
quark propagator in a formulation of the DSEs on a torus.
Our investigation of chiral symmetry breaking and decon-
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finement complements corresponding ones at vanishing
temperature, see, e.g., [14], and provides an interesting
tool for further investigations of the QCD phase diagram
by functional methods.

Dyson-Schwinger equations on a torus.—We work in
Euclidean space with compact time and space directions,
i.e., box size V ¼ L3ð1=TÞwith temperature T and 1=T �
L. We choose periodic boundary conditions in the three
spatial directions for the quark and gluon fields. The gluon
field also obeys periodic boundary conditions in the tem-
poral direction. For the fermion field c we use the gener-
alized, Uð1Þ-valued boundary condition c ð ~x; 1=TÞ ¼
ei’c ð ~x; 0Þ as described above. In loop integrals in momen-
tum space this results in Matsubara modes !pðntÞ ¼
ð2�TÞðnt þ ’=2�Þ in the p4 direction, which depend on
the boundary angle ’ 2 ½0; 2��. In the spatial directions
we have the usual Matsubara sums which are treated with
the techniques described in [15].

In Euclidean momentum space at nonzero temperature
the renormalized dressed quark propagator is given by

Sð ~p;!pÞ ¼ ½i�4!pCð ~p;!pÞ þ i ~6pAð ~p; !pÞ
þ Bð ~p;!pÞ��1; (3)

with vector and scalar quark dressing functions C, A, B.
For the bare quark propagator S0 we have A ¼ C ¼ 1 and
B ¼ Zmm, with bare quark massm. The DSE for the quark
propagator, shown in Fig. 1, reads

S�1ð ~p;!pÞ ¼ Z2S
�1
0 ð ~p;!pÞ � CF

Z2

~Z3

g2T

L3

� X
nt;ni

��Sð ~k; !kÞ��ð ~k; !k; ~p;!pÞ

�D��ð ~p� ~k; !p �!kÞ: (4)

where the sum is over temporal and spatial Matsubara
modes. The Casimir CF ¼ ðN2

c � 1Þ=Nc stems from the
color trace; in this work we only consider the gauge group
SUð2Þ. Furthermore, D�� denotes the gluon propagator in

Landau gauge and �� the (reduced) quark-gluon vertex.
The renormalization factors Z2, Zm and ~Z3 are determined
in the renormalization process.

In order to solve this equation we have to specify explicit
expressions for the gluon propagator and the quark-gluon
vertex. For the momentum range relevant for Eq. (4) we
nowadays have very accurate solutions for the gluon propa-
gator at zero temperature from both, lattice calculations

and functional methods, see, e.g., [16] and references
therein. The temperature dependence of the gluon propa-
gator, however, is much less explored. In [17] a combined
lattice and DSE study records a different temperature de-
pendence of the electric and magnetic sector. Whereas the
magnetic part of the propagator seems to be indifferent to
the deconfinement phase transition, the electric part is
strongly increased at and around the critical temperature
Tc � 300 MeV. Although the lattice data still have con-
siderable systematic errors they may correctly represent
the qualitative temperature dependence of the gluon. We
therefore use a temperature dependent fit to the data given
by

D��ðqÞ ¼ ZTðqÞ
q2

PT
��ðqÞ þ ZLðqÞ

q2
PL
��ðqÞ; (5)

with q ¼ ð ~q;!qÞ and dressing functions ZTð ~q; !qÞ and

ZLð ~q; !qÞ. The transverse and longitudinal projectors

with respect to the heat bath are given by

PT
��ðqÞ ¼

�
�ij �

qiqj

~q2

�
�i��j�;

PL
��ðqÞ ¼ P��ðqÞ � PT

��ðqÞ;
(6)

with (i; j ¼ 1 . . . 3). The SUð2Þ lattice results of Ref. [17]
are well fitted by

ZT;Lð ~q;!q; TÞ ¼ q2�2

ðq2 þ�2Þ2
��

c

q2 þ�2aT;LðTÞ
�
2

þ q2

�2

�
�0�ð�Þ ln½q2=�2 þ 1�

4�

�
�
�

(7)

with the temperature independent scale � ¼ 1:4 GeV and
the coefficient c ¼ 9:8 GeV2. For gauge group SUð2Þ we
have �0 ¼ 22=3 and � ¼ �13=22 in the quenched theory
and we renormalize at �ð�Þ ¼ 0:3. The temperature de-
pendent scale modification parameters aT;LðTÞ are given in
Table I. In order to extend this fit to temperatures not given
in the table we assume aT;LðTÞ to be temperature indepen-

dent below T ¼ 119 MeV and only slowly rising above
T ¼ 597 MeV. For T 2 ½119; 597� MeV we use cubic
splines to interpolate smoothly between the values given
in Table I. We expect the systematic error of this procedure
to be of the same order as the systematic errors inherent in
the lattice data. We also inherit the scale determined on the
lattice using the string tension

ffiffiffiffi
�

p ¼ 0:44 GeV [17].
For the quark-gluon vertex with gluon momentum q ¼

ð ~q; !qÞ and the quark momenta p ¼ ð ~p;!pÞ, k ¼ ð ~k; !kÞ

FIG. 1. The Dyson-Schwinger equation for the quark propa-
gator. Closed circles denote dressed propagators whereas the
open circle stands for the dressed quark-gluon vertex.

TABLE I. Temperature dependent fit parameter of Eq. (7).

T [MeV] 0 119 298 597

aTðTÞ 1 1 1.34 1.65

aLðLÞ 1 1 0.8 4.0
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we employ the following temperature-dependent model

��ðq;k;pÞ ¼ ~Z3

�
�4��4

CðkÞþCðpÞ
2

þ�j��j

AðkÞþAðpÞ
2

�

�
�

d1
d2 þq2

þ q2

�2 þ q2

�
�
�0�ð�Þ ln½q2=�2 þ 1�

4�

�
2�
�
; (8)

where � ¼ �9=44 is the anomalous dimension of the
vertex. Note that because of �þ 2� ¼ �1 the gluon
dressing function together with the quark-gluon vertex
behave like a running coupling at large momenta; this is
a necessary boundary condition for any model interaction
in the quark DSE. The dependence of the vertex on the
quark dressing functions A and C is dictated by the
Slavnov-Taylor identity. The remaining fit function is
purely phenomenological; see, e.g., [18], where an elabo-
rate version of such an ansatz has been used to describe
meson observables. Here we use d1 ¼ 7:6 GeV2 and d2 ¼
0:5 GeV2. Avariation of these parameters shifts the critical
temperatures of both, the chiral and the deconfinement
transition but leaves all qualitative aspects of the results
presented below unchanged. This is also true if one
changes the deep infrared behavior of the vertex to the
(infrared divergent) form extracted in [14] and used in [18];
the confinement-deconfinement phase transition is insensi-
tive to the question of scaling vs decoupling in the sense
specified in [16]. Details will be reported elsewhere.

The DSE is solved numerically using nt ¼ 8 Matsubara
frequencies and a three-volume of V ¼ ð5 fmÞ3, which is
large enough to avoid any significant volume effects. The
renormalization conditions are Cð�Þ ¼ 1 and Bð�Þ ¼ m
with � ¼ ð ~�;�TÞ and ~�2 ¼ 20 GeV2. The resulting
quark dressing functions are subsequently used to deter-
mine the quark condensate according to

h �c c i’ ¼ 4Z2NcT

L3

X
nt;ni

Bð ~p;!pð’ÞÞ
!2

pð’ÞC2 þ ~p2A2 þ B2
; (9)

where we indicated the dependence of the frequencies on
the generalized Uð1Þ-boundary conditions. For nonvanish-
ing bare quark massesm this expression is divergent and, at
least in the continuum limit, has to be renormalized ac-
cordingly. For the purpose of this Letter, however, is suffi-
cient to work with the regularized expression at fixed
ultraviolet cutoff corresponding to fixed lattice spacing.

Numerical results.—First we explore the dependence of
the quark condensate on the boundary angle ’ which can
be read off Eq. (2). Each loop winding n times around the
temporal direction of the torus contributes a factor
cosðn’Þ. Consequently, the integrand in Eq. (1) can be
expanded as a series in cosðn’Þ and is symmetric in the
interval [0, 2�]. This behavior is clearly seen also in our
numerical result for �’ � h �c c i’ shown in Fig. 2. For

T ¼ 200 MeV far below the deconfinement transition we

find almost no angular dependence of the condensate. This
is especially true for the heavier quark massm ¼ 60 MeV.
For T ¼ 400 MeV far above the transition the behavior is
markedly different and we observe the characteristic
cosine-type of behavior of the condensate that we expect
from Eq. (2). This is in nice agreement with the results of
Ref. [5] on the lattice. The angular dependence of the
condensate can be fitted well with a series in cosðn’Þ.
Whereas for the heavier mass m ¼ 60 MeV terms with
n � 3 are sufficient one needs at least terms up to n � 7
for the smaller mass m ¼ 10 MeV. Thus the closer one
gets to the chiral limit the more contributions from
Polyakov loops with higher winding number around the
temporal direction are significant. This is a direct conse-

quence of the mass factor 1=mjlj in the expansion Eq. (2)
and also seen on the lattice [19].
By far the largest contribution to the angular dependence

of the condensate comes from loops with n ¼ 1 which are
projected out by the Fourier transformation (1) to the dual
condensate. The resulting temperature dependence of the
dressed Polyakov loop is shown in Fig. 3 together with the
conventional quark condensate and their derivatives. One
clearly observes a change of behavior in both, the conven-
tional and the dual condensate above T ¼ 270 MeV. The
temperature derivative of both quantities has a peak in the
region Tc ¼ 300–320 MeV signalling the chiral and de-
confinement transition. Note that although both transitions
are calculated from quantities with direct relation to the
spectral properties of the quark propagator they do not
necessarily give the same transition temperatures. On the
contrary, the chiral transition occurs about 10–20 MeV
below the deconfinement transition. Whether the quantita-
tive aspects of this difference is a model-independent result
has to be investigated in more detail.
Finally, we wish to point out that the absolute magnitude

of our dressed Polyakov loop is about a factor of 5 smaller
than the one calculated on the lattice [5]. Since the con-
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FIG. 2 (color online). The angular dependence of the quark
condensate �’ � h �c c i’ below and above the deconfinement

transition for two different quark masses.
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densate and subsequently its dual is a renormalization
point dependent quantity we attribute this difference to a
yet undetermined renormalization factor. This issue has to
be clarified in future work. Furthermore, we note that the
dressed Polykov loop is not strictly zero in the low tem-
perature region as expected in quenched QCD. This is
certainly a consequence of our vertex ansatz which does
not strictly represent quenched QCD but includes a (small)
amount of unquenching effects.

Concluding remarks.—In this Letter we have deter-
mined the dual condensate or dressed Polyakov loop by
solving the Dyson-Schwinger equations for the quark
propagator on a compact manifold. This order parameter
for center symmetry measures contributions from closed
loops winding once around the time direction. We observe
a significant rise of the dressed Polyakov loop around and
above the deconfinement transition temperature together
with a significant decrease of the ordinary quark conden-
sate. The angular dependence of the quark condensate
shows a characteristic dependence of the quark mass: the
lighter the quark the more contributions arise from loops
with winding numbers larger than 1. An obvious next step
is to investigate what happens to the transition tempera-
tures when the backreaction of the quarks onto the Yang-
Mills sector is included. Particularly interesting in this
respect is the case Nf ¼ 2þ 1, which recently is a subject

of intense debate [20,21] in the lattice community.
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FIG. 3 (color online). The temperature dependence of the
dressed Polyakov loop �1 and the conventional quark conden-
sate �� � h �c c i’¼� together with their derivatives for m ¼
10 MeV.
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