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We study the trajectories of a single colloidal particle as it hops between two energy wells which are

sculpted using optical traps. Whereas the dynamical behaviors of such systems are often treated by

master-equation methods that focus on particles as actors, we analyze them instead using a trajectory-

based variational method called maximum caliber (MaxCal). We show that the MaxCal strategy accu-

rately predicts the full dynamics that we observe in the experiments: From the observed averages, it

predicts second and third moments and covariances, with no free parameters. The covariances are the dy-

namical equivalents of Maxwell-like equilibrium reciprocal relations and Onsager-like dynamical

relations.
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We explore the kinetics of two-state processes, A Ð B,
at the one-particle level. Examples of single-molecule or
single-particle dynamical processes that mimic this two-
state dynamics include DNA loop formation [1], protein
folding oscillations [2], or ion-channel opening and closing
kinetics [3]. Two-state fluctuating systems having fixed
rates are called random-telegraph processes.

One way to understand two-state and random-telegraph
processes is through master equations, which are differen-
tial equations that are solved for time-dependent probabil-
ity density functions [4]. For single-particle and few-
particle systems, however, other convenient experimental
observables are the trajectories themselves rather than the
time-dependent populations of the two states. Here we
describe an experimental model system to study such
single-particle two-state stochastic trajectories. We use
these experiments to test a theoretical strategy, called
maximum caliber, that provides a way to predict the full
trajectory distributions, given certain observed mean val-
ues. It has not yet been much tested experimentally; that is
the purpose of the present work.

Using dual optical traps, we have ‘‘sculpted’’ various
energy landscapes. We can control the relative time the
particle spends in its two states and the rate of transitioning
between them. Our method follows from earlier work on
the dual trapping of colloidal particles that was used to
study Kramers reaction rate theory [5]. While these experi-
ments were previously focused on studying average rates,
our interest here is in the probability distribution of
trajectories.

We trap a 1 �m silica bead in a neighboring pair of
optical traps. The laser at 532 nm, 100 mW, provides an
inverted double-Gaussian shaped potential. An acousto-
optic deflector alternately sets up two traps close together
in space, at a switching rate of 10 kHz, which is both much
faster than each individual trap’s corner frequency [6] and
also the fastest bead hopping rate. The strength of each trap

and the spacing between them can be controlled in order to
sculpt the shape of the potential. A tracking 658 nm red
laser at 1 mW was used to determine the position of the
bead. The forward scattered light is imaged through a
microscope condenser onto a position-sensitive detector
[7]. The green trapping laser light at the detector is filtered
out by a long-pass filter. The data were recorded at a rate of
20 kHz, which sets the fundamental time step �t for our
analysis. Trajectories were recorded for intervals ranging
from 20 minutes to more than 1 hour, depending on the
hopping rate. A simple threshold was used to determine
states in the trajectories.
First proposed by Jaynes in 1980, maximum caliber

(MaxCal) is a variational principle that purports to pre-
dict dynamical properties of systems in much the same
way that the maximum entropy (MaxEnt) approach pre-
dicts the properties of equilibrium systems; both use
information theory as a basis [8]. MaxCal has been
shown to be a simple and useful way to derive the flux
distributions in diffusive systems, such as in Fick’s law
of particle transport, Fourier’s law of heat transport, and
Newton’s viscosity law of momentum transport [9]. The
algorithm of MaxCal is identical to that of MaxEnt. As a
reminder, MaxEnt augments the Shannon entropy S ¼P

sps lnps, where ps denotes the probability of a state s
(using the technique of Lagrange multipliers), with mo-
ment quantities that are conserved within the chosen
ensemble; maximizing the entropy produces the proba-
bility distribution of states in equilibrium. In MaxCal,
an entropylike quantity taking on the same C ¼P

ipi lnpi form, where C is the caliber and pi denotes the
probability of the ith trajectory, is also augmented with
moment-type quantities which are in fact experimental
observables. Maximization of the caliber thus predicts
the full distribution of trajectories. Thus MaxCal plays
the same role for dynamics that MaxEnt plays for
equilibrium.
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Examples of trajectories in our system are shown in
Fig. 1. By trajectory, we mean one individual time se-
quence of events over which the particle can transition
back and forth many times between states A and B. In
our experiments, we divide time into discretized time
intervals �t set by the inverse of our sampling rate. A
trajectory has N time steps, so it lasts for a total time N�t.
We aim to characterize the probability distribution for all
trajectories given the known constraints on the space of
possible trajectories, as defined by our first-moment ex-
perimental observables.

We take a reduced view of the experimental system
which will allows the solution to pi to be analytically
tractable. For each �t time step, there are four possible
transitions. If the system is in state a, it can stay in state a
or switch to state b. Similarly, if the system is in state b, it
can stay in state b or switch to state a. Over the entirety of
the ith trajectory, the total number of transition events from
a to a is represented by the variable Naa, with Nab, Nba,
and Nbb defined similarly. In the experiments, the observ-
ables are the averages of these quantities, hNabi, hNbai,
hNaai, and hNbbi, taken over all of the trajectories [sum-
marized in Eqs. (3) and (4)]. Thus there are four corre-
sponding unknown Lagrange multipliers (plus normaliza-
tion) which are fully determined by the four observables. In
this case, the caliber is defined as C ¼ �P

i½pi lnpi �
�0pi � pið�aaNaa;i � �abNab;i � �baNba;i � �bbNbb;iÞ�,
where the �’s are the corresponding Lagrange multipliers.
[Among this set of five Lagrange multipliers, there are only
two independent variables (see below), so only two experi-
mental average quantities are required [10]]. The proba-
bilities pi of all of the trajectories are then found by
maximizing the caliber @C

@pi
¼ 0.

The calculation of the pi’s is made simple by the use of
the trajectory partition function Qd, which serves for our

dynamical system very much the same role that the equi-
librium partition function serves for the Boltzmann distri-
bution law of equilibrium. For 2N trajectories having N
time steps, Qd is given by

Qd ¼
X2N
i

ð�Naa;i�Nbb;i!
Nab;i

f !
Nba;i
r Þ; (1)

and the probability of a particular trajectory labeled i is
given by

pi ¼ Q�1
d �Naa;i�Nbb;i!

Nab;i

f !
Nba;i
r : (2)

We write the exponentiated Lagrange multipliers as the
‘‘statistical weights’’ �, �, !f, and !r, with respect to the

observables described above: � is the statistical weight
that, given that the system is in state A at time t, it is also
in state A at time tþ�t; �, for staying in state B at time
tþ �t, given that the system was in B at time t; !f, for

switching from A to B in the time interval �t; and !r, for
switching from B to A in the time interval �t.
It is readily shown that the average quantities are simply

derivatives of the partition function; for example,

hNbbi ¼ @ lnQd

@ ln�

���������;!f;!r

; hNabi ¼ @ lnQd

@ ln!f

���������;�;!r

(3)

and

hNaai ¼ @ lnQd

@ ln�

���������;!f;!r

; hNbai ¼ @ lnQd

@ ln!r

���������;�;!f

(4)

together define the statistical weights.
The MaxCal strategy is as follows. First, experiments

give the four trajectory-averaged quantities such as hNbbi,
hNabi, etc. Second, substituting those measured values into
Eqs. (3) and (4) gives four equations that are solved for the
four unknowns �, �, !f, and !r. This now gives all of the

information needed to compute Qd and pi for any trajec-
tory from Eqs. (1) and (2). Finally, taking the second and
higher derivatives ofQd gives the higher moments (i.e., the
dynamical fluctuations) of the observables, such as

hN2
bai � hNbai2 ¼ @2 lnQd

@ðln!rÞ2 j�;�;!f
.

In addition, other properties of interest are also readily
computed. Let NB represent the number of units of time
that the system spends in state B. Then we have for each
individual trajectory NB ¼ Nab þ Nbb þ N0b and NA ¼
Naa þ Nba þ N0a, where N0b is 0 (1) if the trajectory
begins in state A (B) and N0a is 1 (0) if the trajectory
begins in state A (B). If the number of steps is sufficiently
large, the contribution from initial conditions can be

ignored. Hence the variance for NB is given by hN2
Bi �

hNBi2 ’ @2 lnQd

@ðln�Þ2 j�;!r;!f
þ @2 lnQd

@ðln!fÞ2 j�;�;!r
þ 2 @2 lnQd

@ ln�@ ln!f
j�;!r

.

Mixed moments and covariances are obtained from
mixed derivatives of Qd. For example,

@2 lnQd

@ ln!f@ ln�

���������;!r

¼ @2 lnQd

@ ln�@ ln!f

���������;!r

; (5)

20 sec
1.3 kBT

5.3 kBT

FIG. 1. Sculpted energy landscapes (left, averaged 20 minutes)
and the corresponding microtrajectories. The trace is raw data;
states are assigned after boxcar filtering and threshold finding.
Top: The lower state is slightly more populated; there is a high
barrier (infrequent transitions). Bottom: The upper state is more
populated; the barrier is small (frequent transitions). The dis-
tance between the two potential minima ranges from 200 to
700 nm.
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which leads to @hNbbi
@ ln!f

j�;�;!r
¼ @hNabi

@ ln� j�;!f;!r
¼ hNabNbbi �

hNabihNbbi. Higher derivatives of Qd give information
about the higher-order fluctuations. Hence, given Qd, all
of the trajectory observables and their moments can be
computed. More details of the theoretical approach for this
problem are given in Ref. [10].

A simple way to compute Qd is through the matrix
propagator G:

G ¼ � !r

!f �

� �
; (6)

where each element of G represents the statistical weight
of transitioning from some initial state during each time
step. We consider here only stationary processes, for which
the statistical weights are time-independent, but the
MaxCal method itself is not limited to such simple dynam-
ics. We can express Qd¼ð11ÞGN�1ða0 b0ÞT , where
ða0 b0ÞT denotes the initial state probabilities. Thus all of
the higher moments of the observables are analytically
tractable sinceQd can always be expressed in terms of par-
tial derivatives of the eigenvalues of G. For nonstationary
processes, the G matrix would differ for each time step.

Thus the probability of being in state A at time t is given
by

PðA; tÞ ¼ ð1 0ÞGN�1ða0 b0ÞT
ð1 1ÞGN�1ða0 b0ÞT

: (7)

Again, N ¼ t=�t; this is another form of Eq. (2). For
random-telegraph processes, this form of the probability
of a trajectory reproduces the conventional result from
master equations [4]. In MaxCal, the higher moments of
the observables are easily accessed by taking higher de-
rivatives of Qd; it is unclear how to compute similar
quantities from the traditional approach [11].

Functional similarities between microscopic models in
statistical mechanics and equations of state in thermody-
namics allows assignment of undetermined Lagrange mul-
tipliers in the MaxEnt formalism to physically realizable
quantities, such as � $ T�1 [12]. We now make similar
correspondences between the MaxCal-derived statistical
weights with probabilities. The four (exponentiated)
Lagrange multipliers �, �, !f, and !r in matrix G are

reminiscent of a Markov chain propagator. Thus we choose
to assign � $ PðA; tþ�tjA; tÞ, !f $ PðB; tþ �tjA; tÞ,
� $ PðB; tþ �tjB; tÞ, and !r $ PðA; tþ�tjB; tÞ; each
is a probability of moving between or among states in time
�t. Thus �þ!f ¼ 1 and �þ!r ¼ 1 enforces probabil-
ity conservation; these conservation relations also fall out
of calculating the first partial derivatives of Qd against
observed first moments. The Lagrange multipliers can be
interpreted as log transition probabilities. G becomes

1�!f !r

!f 1�!r

� �
;

and the master equation follows immediately. The advan-
tage of the MaxCal approach is that Qd readily provides

information about trajectory observables not obviously
accessible from master equations.
We now show tests of the MaxCal predictions. Given the

first-moment averages observed for the trajectories,
MaxCal predicts the second moments. Figure 2 shows
that two such predicted second moments are in good
agreement with the experimental data.
Figure 3 compares one experimental third cumulant with

the predicted value from caliber obtained from the mea-
sured first moments. The first moments are easy to measure
with good accuracy from short trajectories, so one virtue of
the caliber approach is that all of the higher predicted
moments are noise-free compared to higher moments ex-
tracted from data: Predicted moments are dependent on
first moments only, whereas data-based higher moments
are contaminated by noise from every other lower moment.
See the supplementary information [13] for more detail.
Figure 3 also shows the quantity hNBNabi � hNBihNabi.

These covariances, equivalent to mixed moments, give an
alternative way to express reciprocal relationships resem-
bling the Maxwell relations of thermodynamics and
Onsager’s reciprocal relations for dynamical processes
near equilibrium. In essence, this means that one trajectory
observation counts for two: Small perturbations on a tra-
jectory are equivalent to observing covariances; thus, with-
out performing additional experiments or recalculatingQd,
we know how the system will behave for different potential
wells—just looking at the fluctuations is enough.
We can compute the ratio NA=NB ¼ K. As t ! 1, this

ratio simply becomes the equilibrium constant Keq for the

relative populations of the two states A and B. In the small-
time limit, for this single particle, this ratio is not a single
number, as it would be in a bulk equilibrium experiment;
rather in single-particle cases, this has a distribution of
values. Figure 4 shows these distributions for a situation in
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FIG. 2. Second moment of the trajectory distribution. The x
axes give the predicted second moments from the MaxCal
approach, based on the known first moments. The y axes give
the experimental values of the second moments. Left: Variance
of hNBi; right: variance of hNbai. The dashed lines are the best
linear fits; fitting parameters are inset. Each point represents one
experimentally observed trajectory. Trajectories were 30 000 �t
units long, and errors were calculated for around 600 trajectories.
!r and !f values ranged from 1� 10�5 to 1� 10�3.
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which the average is hNA=NBi � 1. The distribution ap-
proaches a � function as t ! 1 and thus K ! Keq. In -

diffusion-related problems, small-number situations in
which particles flow up concentration gradients, rather
than down, have been referred to as ‘‘bad actors’’ [9]; the
number of bad actors diminishes as trajectories get longer.
We also see that simulation of the partition function
matches the experimentally measured distributions of
NA=NB. This indicates that the chosen first-moment con-
straints are sufficient to describe the entire trajectory space.

In summary, we have studied a single colloidal particle
undergoing a two-state process A Ð B with stationary
rates. By measuring short trajectories, we obtain first-mo-
ment observables hNbbi, hNaai, hNbai, and hNabi. The varia-
tional principle of maximum caliber is then used to predict
the higher moments of the observables as well as the full
probability distribution of the trajectories. Maximum
caliber also gives other dynamical reciprocal quantities,
resembling Maxwell-like relations. We believe that
trajectory-based dynamical modeling such as this will be
useful in single-molecule and few-molecule science.
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