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We report on the experimental observation of the phase angle of a particle escaping over a periodically

modulated potential barrier. Optical tweezers and back-focal plane position detection were used to record

particle trajectories in the entire double-well potential. These measurements provide a sensitive test of

theories proposed in the past decade of escape driven by random thermal noise from a periodically

modulated potential. The observed phase shifts as a function of modulation frequency are consistent with

those calculated using existing theories.
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Investigations of thermally excited escape processes
have a long history in theoretical physics, with the first
modern, quantitative treatment provided by Kramers in
1940 [1] (for extensive reviews, see Hänggi et al. [2],
Pollak and Talkner [3], and Reimann [4]). When the con-
fining potential is time-dependent, the barrier-crossing
problem becomes more difficult to analyze, but its appli-
cability also becomes more general. The case of periodi-
cally modulated forces, in particular, occurs in a number of
physical contexts, such as stochastic resonance [5] and
Brownian ratchets [6,7]. It has consequently received sig-
nificant theoretical [8–15] and increasing experimental
attention [16–19].

Typically, the escape rate is computed and measured as
an average over the escape phase [10]. Here we examine
this problem at a more sensitive level, by quantitatively
studying, both theoretically and experimentally, the phase
angle between the barrier-crossing event and the periodi-
cally modulated potential. A direct comparison between
the two has so far been lacking.

Experimental setup.—We generated an energy barrier
separating two potential wells by positioning two time-
shared optical traps in close proximity [17,20], with the
detailed structure of this double-well potential controlled
by adjustment of the laser power and trap separation. A
modified back-focal plane detection scheme enabled re-
cording the trajectory of a trapped polystyrene particle
(radius ¼ 0:325� 0:005 �m) in the full double-well po-
tential (see supplementary material [21]). The supplemen-
tary information shows a representative time series of the
particle’s x position, enabling us to compute the one-
dimensional trapping potential VðxÞ using the Boltzmann
distribution PðxÞ ¼ exp½�VðxÞ=kBT�, with PðxÞ the parti-
cle’s position histogram. The potential is well-defined near
the minima but fluctuates significantly near the barrier
where the particle spends relatively little time (Fig. 1).
Detailed knowledge of VðxÞ then allows for a computation
of the Kramers time �K for each well. The barrier heights

�E1 and �E2 are readily derived from VðxÞ (cf. Fig. 1),
whereas the local curvatures at the potential’s minima
(kb1;2) and barrier ku follow from locally fitting to a qua-

dratic. Within each well the potential fits to a quartic:
VðxÞ � �ð1=2Þ�2x2 þ ð1=4Þ�x4, where �2 and � are ob-
tained from the local curvatures k, summarized in Table I.
The Kramers time �K for each of the wells is given by

Kramers’ equation �Ki
ffi �ri expð�Ei=kBTÞ, with �ri ¼

2��=
ffiffiffiffiffiffiffiffiffiffiffi
kbiku

p
, where � ¼ 6�r� is the viscous drag coeffi-

cient, r the radius of the particle, and � the medium
viscosity (water). The particle center was �800 nm above
the surface of the flow cell, requiring a correction to the
viscous drag to account for the presence of the wall [22].
The Kramers times thus computed compares very well
with the mean residence times directly determined from
experimentally obtained time series of the particle’s posi-
tion (~�K, Fig. 2, and Table I). Such consistency provides
confidence that our one-dimensional treatment of the acti-
vation process is reasonable [20].
Once the potential had been fully characterized, a peri-

odic external field was added in order to create a modulated
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FIG. 1. Double-well potential as calculated from the position
histogram of the polystyrene particle. Wells are indicated by E1

at x1 ��188 nm and E2 at x2 �þ200 nm, while the barrier top
U is located at x�þ2 nm. Barrier heights �E1 and �E2 are
5:57� 0:07kBT and 4:79� 0:02kBT, respectively.
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potential (periodic force) according to

� _x ¼ �V0ðxÞ þ A cosð2�t=�mÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�kBT

p
�ðtÞ; (1)

with x the system coordinate, VðxÞ the potential, �ðtÞ a
white noise, A the amplitude of the modulating force, and
�m its period. In practice, the periodic force was generated
by changing the laser intensities of the two traps with
identical amplitude but with opposite phase. Note that we
investigate only the transitions from one trap over the
barrier, so that the phase relation between the two traps
is irrelevant to our results. In practice, the opposite phase
relation proved helpful in restoring the particle to the trap
of interest. The force amplitude A was then computed as
the slope of potential well difference between the potential
shown in Fig. 1 and the potential with a higher laser
intensity. Because of the significant uncertainty in both
potentials in the vicinity of the barrier, the force magnitude
can be estimated only to within a factor of 2: A�
15–30 fN.

Phase shifts.—While previous experiments have char-
acterized escape dynamics in terms of residence time dis-
tributions [16,20], we focused on determining the phase
angle and its dependence upon the frequency of the exter-
nal modulation. A modulation reference signal was ob-
tained by low-pass filtering the acousto-optic deflector
driving signal while accounting for any undesired phase
shifts incurred upon filtering. The modulation reference
signal and particle position were recorded simultaneously,
enabling computation of the phase angle. The experimental
escape phase, or phase angle, was defined as indicated in

Fig. 3: It is the time from the nearest previous maximum in
the modulation reference signal to the barrier-crossing
event.
A phase angle of � is assigned when the crossing occurs

with the barrier at its minimal height (at time �m=2). We
have determined the phase angle for transitions from po-
tential E2 into E1. Three time constants are of importance
in this dynamical system: �r, the Kramers prefactor; �K,
the Kramers time; and �m, the modulation period of the
external driving field. Modulation periods �m ranged from
much smaller than up to the order of the Kramers time, i.e.,
from 62.5 ms to 1 s. Experimental results are presented in
Fig. 4 (solid squares), where we show the transition proba-
bility versus the phase angle.
As noted, a phase angle of � (corresponding to a time

�m=2) corresponds to a barrier minimum, and, not surpris-
ingly, the transition probabilities tend to peak around this
point. However, at modulation times close to the Kramers
time (�m ¼ 1 s and �K ¼ 1:5 s), the probability maximum
has shifted towards the left, i.e., towards smaller phase
angles. We interpret this shift as follows: As �m increases,
the escape dynamics are determined increasingly by the
mechanisms leading to the ordinary Kramers time in the
static case; consequently, escape may occur well before the
barrier has reached a minimum. In the limit �m ! 1, one
expects to recover standard Kramers decay, as in Fig. 2.
However, at shorter modulation times, for example, 62.5
and 250 ms with �r � �m � �K, we expect transitions to
occur when the barrier is near a minimum: In this regime
the driving force dominates the escape dynamics. These
arguments capture the essential qualitative trends seen in
the data; however, a detailed theoretical analysis is re-
quired to uncover the intricacies of the dynamics involved
and to quantitatively predict the observed phase angles. We
discuss this in the next section.
Theoretical analysis.—Previous treatments [8–13,16]

can be used to analyze escape rates in the experimental
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FIG. 2. Probability distribution of escape from well E2 in the
absence of modulated force. The solid line (�) represents a fit of
the data to a single-exponential decay function yielding a mean
residence time of ~�K ¼ 1:6� 0:1 s (N ¼ 364 escapes).

x 
(t

)

t 

τφ

maximal position

φ

A
co

sφ

0   π   2π

FIG. 3. Definition of the escape phase angle �� expressed as a
fraction of the modulation period �m. �� equals the time from

the point where the particle passes the potential barrier top to the
nearest previous maximum of the phase signal.

TABLE I. Numerical values for parameters of the potential
well shown in Fig. 1 and characteristic time constants.

�EðkBTÞ jkjðfN=nmÞ �rðmsÞ �KðsÞ ~�KðsÞ
E1 5:57� 0:07 8:9� 0:3 7:7� 0:2 2:4� 0:1 2:3� 0:2
E2 4:79� 0:02 4:4� 0:1 11:0� 0:2 1:5� 0:2 1:6� 0:1
U � � � 1:60� 0:01 � � � � � � � � �
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setup described above. Because all are in fundamental
agreement, we use the approach of Ref. [10], to which
we refer the reader for details.

The unperturbed (static) potential VðxÞ was quartic:
VðxÞ ¼ ð�1=2Þ�2x2 þ ð1=4Þ�x4, with �2 ¼ 1:9 fN=nm
and � ¼ 4:64	 10�5 fN=nm3; this was then subjected to
a periodic forcing amplitude of magnitude A ’ 15–30 fN.
The analysis depends on the relative magnitudes of A andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m!2

ukBT
p

, where !u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U00ðxuÞ=m

p
is the oscillation

frequency about xu, the top of the well. We find thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m!2

ukBT
p � 0:4 pN, roughly a factor of 15–30 larger
than A, indicating that a perturbative modification of
Kramers’ theory can be used [10].

Let x
ðtÞ denote an optimal escape trajectory when A ¼
0 (see [23] for how these are determined), and consider the

family xð�Þ

 ðtÞ � x
ðt� �

2� �mÞ of phase-shifted trajecto-

ries, where the phase angle � satisfies 0 � �< 2�.
Then the first-order (in A) correction to the unperturbed

energy barrier �E will be Aw1ð�Þ, where w1ð�Þ ¼
�R1

�1 _xð�Þ

 ðtÞ	ðtÞdt. For the quartic potential, we then

find for the instantaneous phase-dependent escape rate
�ð�Þ:

�ð�Þ � ��1
K exp

�
� A�3

2kBT�
ffiffiffiffi
�

p
Z 1

�1
dtfðtÞ

�
; (2)

fðtÞ ¼ exp½� �2

� ðt�!m�Þ�
f1þ exp½� �2

� ðt�!m�Þ�g3=2
cosð!mtÞ: (3)

Although the ‘‘phase shift’’ approach of Ref. [10] employs
a different analysis from other investigations of this prob-
lem, most notably the ‘‘logarithmic susceptibility’’ ap-
proach of Ref. [8], both arrive at the expression above for
the phase-dependent escape rate.
The phase-dependent escape rates �ð�Þ are shown in

Fig. 5 using the experimental numbers given above for the
3 different modulation times: �m ¼ 62:5 ms, 250 ms, and
1 s. It is interesting to note that the phase angle maxima of
�ð�Þ slightly decreases as �m decreases, contrary to ex-
perimental observation. However, �ð�Þ is not the quantity
measured; rather, the correct stochastic quantity to com-
pare to is the phase angle when the particle first escapes its
confining well. We will denote by P ð�Þ the probability
that a particle escapes when the system is at phase angle�,
conditioned on its not having escaped prior to that time. If
�0 is the system’s phase angle when a particular run
begins, and Pð�0Þ is its probability density over many
runs, then P ð�Þ is given by P ð�Þ ¼ P1

n¼0 Pð�þ 2�nÞ,
with 0 � �< 2� and

Pð�Þ ¼ �ð�Þ
2�!m

Z 2�

0
d�0Pð�0Þ

	 exp

�
�
Z ð���0Þ=!m

0
d�0�ð�0Þ

�
; (4)

with �0 � �<1 in (4).
Figure 4 (solid and dashed lines) shows P ð�Þ, which

displays the qualitative (and quantitative, for A ¼ 30 fN)
behavior observed in the experiment. In particular, the shift
of the probability maximum towards a smaller phase angle
for longer modulation times is predicted and agrees both
qualitatively and quantitatively with the experimentally
determined shift.

0.3

0.2

0.1

2ππ
φ

λ(
φ)

FIG. 5. Phase-dependent escape rates �ð�Þ at �m ¼ 62:5 ms
(short-dashed line), �m ¼ 250 ms (long-dashed line), and �m ¼
1 s (solid line).
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FIG. 4. Experimental and theoretical escape probabilities vs
phase angle. (a) �m ¼ 62:5 ms; (b) �m ¼ 250 ms; (c) �m ¼ 1 s.
Solid squares: Experimental data; dashed and solid lines: escape
probabilities Pð�Þ [Eq. (4)] with force amplitudes of A ¼ 15 fN
and A ¼ 30 fN, respectively.
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Discussion.—Because the experiment permits us to de-
termine the modulation force amplitude A only to within a
factor of 2, we show in Fig. 4 two fits, with the force at
either end of the range: one with A ¼ 15 fN and the other
with A ¼ 30 fN. We see that the better fit occurs with the
larger force and that the theory agrees with the experiment
within experimental uncertainty.

Future experiments can improve this test of the theory in
at least two ways. It is clear that a more accurate determi-
nation of the modulating force is necessary for further
progress. This is experimentally challenging, however, as
it requires a sensitive determination of the static and per-
turbing potentials near the barrier. The obvious difficulty in
doing this arises from the particle’s spending compara-
tively little time in this region. Therefore, either a method
other than using time series needs to be developed, or else a
significant increase in the number of escape trajectories is
required.

A second intriguing feature is the suggestion in the data
(cf. Fig. 4) of a developing asymmetry in the escape
probability vs phase angle as the modulation time becomes
shorter (62.5 ms). The theoretical curves do not appear to
reflect this behavior. However, given the increasing rough-
ness of the data, particularly as one moves away from the
probability maximum, it is difficult to ascertain whether
such an effect is actually present. If in fact this asymmetry
is real, our theory may fail to capture it because it always
assumes that the experiment is in the adiabatic regime, i.e.,
that �r � �m, whereas �r � 0:2�m when �m ¼ 62:5 ms.
Further theoretical and experimental explorations in the
very short-time regime will be required to resolve this
issue. Another possibility arises from an interesting obser-
vation made in Ref. [24], where nonconservative forces
due to radiation pressure may potentially give rise to three-
dimensional circulation of particles, which could affect
escape kinetics. Even though this observation has recently
been contested [25], the particle used in that paper was
roughly a factor of 3–4 larger, which gives rise to much
higher forces due to radiation pressure than in our case. We
would further expect that the agreement we observed
between the calculated and measured Kramers times (�K
and ~�K) would not have occurred if such three-dimensional
motion had been important, so we suspect that this effect, if
present, plays no role in our experiment. It is also interest-
ing to note that an asymmetry was predicted by Dykman
and Rykvine [13] (cf. Fig. 2) for the instantaneous escape
rate. This is owing to two factors playing against each
other: the modulation frequency times the relaxation time
at the top of the barrier vs the ratio of the strength of the
modulating force to the noise intensity. In our experiment,
the first of these is no larger than 0.2 at the shortest
modulation times, while the latter is roughly 10�2.
Because the asymmetry occurs when at least one of these

two factors is large, this is unlikely to be the cause of the
asymmetry in our experiment. It would be of great interest
to determine in future experiments whether such an asym-
metry really exists in the experimental regime considered
here.
In summary, we have experimentally verified theoretical

predictions of the phase angle of escape for a particle
subject to a modulating force and weak external noise.
We note that the large bandwidth of the detection system
used here should be particularly beneficial for studying
underdamped systems where the slowly damped oscilla-
tions may be quite fast.
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