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We show that the state-independent violation of inequalities for noncontextual hidden variable theories

introduced in [Phys. Rev. Lett. 101, 210401 (2008)] is universal, i.e., occurs for any quantum mechanical

system in which noncontextuality is meaningful. We describe a method to obtain state-independent

violations for any system of dimension d � 3. This universality proves that, according to quantum

mechanics, there are no ‘‘classical’’ states.
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Introduction.—Bell inequalities [1] are constraints in-
volving the correlations of results of spacelike separated
measurements, which are satisfied by any local hidden
variable theory, but are violated by entangled states. For
years, entanglement has been considered ‘‘the character-
istic trait of quantum mechanics, the one that enforces its
entire departure from classical lines of thought’’ [2].

Recently, one of us [3] has shown that, for certain
physical systems, there are inequalities for the correlations
of compatible measurements which are satisfied by any
noncontextual hidden variable theory, but are violated by
any quantum state, even by nonentangled and totally mixed
states. Specifically, Ref. [3] presents three correlation in-
equalities, two of which are violated by any state described
in quantum mechanics by a Hilbert space of dimension
d ¼ 4 (i.e., admitting 4 pairwise compatible propositions),
and a third which is violated by any state of d ¼ 2N (with
N odd and N � 3).

An immediate question arises from this result: Can any
quantum system be shown to violate an inequality which is
valid for any noncontextual hidden variable theory?
Moreover, does this violation hold for any state? The three
inequalities in Ref. [3] are based on three special proofs of
the Kochen-Specker (KS) [4,5] theorem in which each
observable appears in an even number of contexts, while
the prediction of quantum mechanics for the sums or the
products of a compatible set of these observables is minus
the identity in an odd number of contexts. A related ques-
tion is therefore: Is there a method to obtain correlation
inequalities violated by any quantum state, based on any
available proof of the KS theorem, even those without this
special property? An affirmative answer would provide a
method to obtain state-independent violations for any d �
3, underlying the universality of this phenomenon. This is
the best result possible, since two-dimensional quantum
systems can be described by contextual hidden variable
theories [4].

The aim of this Letter is to give affirmative answers to
these questions. For any quantum system with d � 3 we
find an inequality which is satisfied by observables in any
noncontextual hidden variable theory, but violated by their
corresponding quantum observables, for any quantum
state. We do that by obtaining an inequality from a
d-dimensional proof of KS theorem. These results under-
line the universality of the phenomenon pointed out in [3]
and allow us to draw the following conclusions: (i) ‘‘clas-
sical’’ states are impossible in quantummechanics, and this
impossibility can be tested by experiment; (ii) in this
perspective, local realism underlying Bell inequalities
can be regarded as noncontextuality restricted to spacelike
separated contexts. Thus the inequalities derived here and
Bell inequalities belong to a larger family of inequalities
satisfied by ‘‘classical’’ systems. Bell inequalities are usu-
ally optimized to allow for a maximum violation on a
particular quantum state, but here we seek inequalities
universally violated by all quantum states. The price for
this universality is a relatively small maximum degree of
violation allowed by quantum mechanics.
Some clarification of the terminology that will be sub-

sequently used might be in order. All the theories which we
consider (quantum mechanics, and trivially the noncontex-
tual theories) satisfy the principle of noncontextuality of
probability. Suppose that A, B, and C are physical ob-
servables such thatA is compatible withB and C, butB is
incompatible with C. The principle of noncontextuality of
probability states that, for every state, the expectation value
of A is the same whether A is measured with B, or
whether A is measured with C. That is, the expectation
of an observable is context independent. In quantum me-
chanics, noncontextuality of probability leads to Born’s
rule (this is Gleason’s theorem [6]). Moreover, in quantum
mechanics, noncontextuality of probability implies non-
signaling. To see this one can take A ¼ 1 �A2, B ¼
B1 � 1, and C ¼ C1 � 1, with B1 and C1 incompatible.
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Another concept is the noncontextuality of values,
which we simply call noncontextuality. With every set of
observables in classical theories we can associate numeri-
cal values, which are within the range taken by the observ-
ables, and respect the algebraic relations among them. In
quantum mechanics we cannot do that, and this is the
content of the KS theorem [4,5]. Hence, hidden variable
theories which associate values with quantum mechanical
observables in the above manner must be contextual. The
value of an observable is context dependent.

Consider then a physical system admitting d compatible
dichotomic observables (values �1), hereafter denoted by
A1; . . . ; Ad, and consider n different (mutually incompat-
ible) characterizations of this system via observable sets

Sj ¼ fAj
1; . . . ; A

j
dgwith j ¼ 1; . . . ; n. The different Sj’s will

serve as different contexts. Some of the mutually incom-
patible sets Sj may overlap, so one can have j � k, for

which Aj
i ¼ Ak

m for some values of i and m. The non-
contextuality of probability implies that the expectation

of Aj
i ¼ Ak

m remains the same, whether measured within
the set (context) Sj or Sk. As noted, the situation is different
when one tries to assign noncontextual values to the ob-
servables. The KS theorem states that, for d � 3, there are
families of compatible dichotomic observable sets fSjgnj¼1,

such that it is impossible to consistently assign noncontex-

tual values �1 to all the involved observables Aj
i , so that

exactly one observable in every set is assigned one of the
two values, e.g. �1 and the remaining observables are
assigned the other value, e.g.þ1. Finding a suitable family
of sets fSjgnj¼1 establishes a proof of the KS theorem.

The question addressed here is whether one can derive
from every proof of the KS theorem an inequality for
correlations, which will be satisfied by every classical

theory (i.e., whenever the Aj
i are interpreted as �1 valued

classical random variables), and will be violated by the
family fSjgnj¼1 for any quantum state. Such an inequality

can be tested in the following way: Fix a quantum state,
measure the observables in the set S1, then prepare another
system in the same state and repeat the experiment for S2,
and so on many times. Then, vary the state and repeat it. A
detailed description of a complete experiment of this type
is presented in [7]. For the procedure to make sense, the
inequality must be written as a bound on a function of
components, each involving only compatible observables.

Classical inequality.—Consider a physical theory which

interprets the observables Aj
i as classical random variables

with (simultaneous) noncontextual values �1. We shall
show that it must satisfy the following inequality:

�ðd; nÞ � nðd� 2Þ � 2; (1)

where

�ðd; nÞ ¼ Xn

j¼1

hBji; (2)

and

Bj ¼ �X

p�q

Aj
pA

j
q �

X

p�q�r�p

Aj
pA

j
qA

j
r � � � � � Yd

k¼1

Aj
k � 1:

(3)

The proof is as follows:

Bj ¼ Xd

k¼1

Aj
k �

Yd

k¼1

ð1þ Aj
kÞ: (4)

When Aj
k ¼ 1 for all k, then Bj ¼ d� 2d. When, for at

least one value of k, Aj
k ¼ �1, then Bj ¼ Pd

k¼1 A
j
k. For any

d > 2, the former value is smaller than all the latter values.

Therefore, Bj
max ¼ d� 2, which is obtained for d� 1

positive and one negative value of Aj
k. Since the (over-

lapping) sets Sj are chosen so that it is impossible to

produce Bj
max for all j (because fSjgnj¼1 yields a proof of

the KS theorem), then an upper bound for
P

n
j¼1 B

j is nðd�
2Þ � 2. Therefore, this is also an upper bound forP

n
j¼1hBji.
Quantum violation.—Quantum predictions violate in-

equality (1). If we associate every Aj
k with a unit vector

jvj;ki by
Aj
k ¼ 1� 2jvj;kihvj;kj; (5)

where hvj;kjvj;k0 i ¼ �kk0 for every 1 � j � n, then the
operator corresponding to the observable Bj is

Bj ¼ Xd

k¼1

Aj
k �

Yd

k¼1

ð1þ Aj
kÞ (6)

¼ ðd� 2Þ1; (7)

where equality (7) follows from the observation that 1þ
Aj
k is twice the projection on the (d� 1)-dimensional sub-

space orthogonal to jvj;ki; hence Qd
k¼1ð1þ Aj

kÞ ¼ 0 and

thus (7) follows from
P

d
k¼1 A

j
k ¼ ðd� 2Þ1.

By summing Eq. (7) over all the sets Sk, one concludes
that, independently of the quantum state, the results of the
measurements of the observables Bj lead to a violation of
inequality (1). Specifically, according to quantum mechan-
ics,

�QM ¼ nðd� 2Þ: (8)

Impossibility of classical states.—The affirmative an-
swers to our questions show that, for any quantum state,
we can design an experiment with an ensemble of par-
ticles in this state whose results cannot be reproduced
by any noncontextual hidden variable theory. In this
sense, all states of physical systems are nonclassical. A
totally mixed state is no exception. The measure-
ments performed on totally mixed states, if precise enough,
will show their nonclassicality all the same. There is al-
ways a finite separation between a classical state and a
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quantum state. This difference can be observed in actual
experiments.

Bell inequalities are a particular case of more general
inequalities.—Another consequence of the universality of
the state-independent violations of noncontextual in-
equalities is the following. So far, on one hand, we had
Bell inequalities derived from the assumptions of local
realism alone, and violated in a state-dependent way by
the quantum mechanical predictions. On the other hand,
we had proofs of the KS theorem which pointed out a
logical contradiction between the assumptions of non-
contextual realism and the formal structure of quantum
mechanics—and for this very reason, an experimental
test of noncontextual realism is a subtle matter indeed.
Now, we see that Bell inequalities are, in a sense, the tip
of an iceberg. They belong to a more general family of
inequalities which are satisfied by appropriate classical
random variables, and violated by their corresponding
quantum observables. These include inequalities vio-
lated not only by entangled states of composite quantum
systems, but for any state of any quantum system with
d � 3.

Remarks.—Among all known proofs of the KS
theorem for d ¼ 3 [4,8–12], the one with the smallest n
has n ¼ 36 sets and 49 observables [8]. Among all known
proofs of the KS theorem for d ¼ 4 [12–17], the one with
the smallest n has n ¼ 9 sets and only 18 observables [15].
There are also proofs for other values of d [18,19], and
methods to generate proofs of the KS theorem for any
value of d [13,19–21].

For some fSjgnj¼1, the upper bound of inequality (1)

cannot be reached. For instance, for the 24 observables in
d ¼ 4 of [12], n ¼ 24. The value of � predicted by quan-
tummechanics is indeed 48 [cf. Eq. (8)], but in this case the
upper bound for �ð4; 24Þ is 40. It is substantially smaller
than the general bound in (1) which is 46. Therefore, the
quantum violation is in this case 8, i.e., larger than our
universal 2. This is due to the fact that the set of 24
observables in [12] is not critical (i.e., the proof also works
if some observables are removed) in the sense that it can
generate 96 (critical) 20-observable and 16 (critical) 18-
observable proofs of the KS theorem [15].

The case d ¼ 4 using the 18 observables in [15] de-
serves a closer examination. The resulting inequality con-
tains a sum of 99 terms bounded by 16, while the quantum
prediction is 18. However, if we omit all the correlations
but those between 4 observables, then we obtain a 9-term
inequality introduced in [3]. The bound there is 7 while
quantum mechanics allows 9. All this shows that the
method presented here may lead to inequalities that are
not optimal in the sense that they may be strictly weaker
than the inequalities with fewer terms but the same viola-
tion. Finding simpler inequalities with the same violation is
interesting since in actual experiments every expectation
value is affected by errors.

Our inequality (1) is related to earlier ‘‘KS inequalities’’
[22,23] between probabilities instead of correlations.
Although an equivalence can be established between the
final inequalities, the main difference is that, while the
derivation of the inequalities in [22,23] assumes the sum
rule (i.e., it requires quantum mechanics), the derivation of
inequality (1) only requires the assumption of noncontex-
tual probabilities (i.e., it does not require quantum me-
chanics). Quantum mechanics is only used to predict that
(1) will be violated by the experimental results.
Conclusions.—To sum it up, we have produced an algo-

rithm associating an inequality for the results of compat-
ible measurements with every proof of the KS theorem.
The inequality is satisfied by any noncontextual hidden
variable theory. Nevertheless, it is violated by quantum
mechanical predictions for every physical state, including
the seemingly classical totally mixed state. In this sense,
our result shows that there is no such thing as a classical
state, and suggests that Bell inequalities are a particular
type of a more general inequalities where neither spacelike
separation nor entanglement play a fundamental role.
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