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We present a framework to determine nonequilibrium steady states in strongly correlated electron

systems in the presence of dissipation. This is demonstrated for a correlated electron (Falicov-Kimball)

model attached to a heat bath and irradiated by an intense pump light, for which an exact solution is

obtained with the Floquet method combined with the nonequilibrium dynamical mean-field theory. On top

of a Drude-like peak indicative of photometallization as observed in recent pump-probe experiments, new

nonequilibrium phenomena are predicted to emerge, where the optical conductivity exhibits dip and kink

structures around the frequency of the pump light, a midgap absorption arising from photoinduced Floquet

subbands, and a negative attenuation (gain) due to a population inversion.
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Introduction.—Recent pump-probe experiments have
unveiled not only ultrafast dynamics of correlated electron
systems, but also a possibility to control their physical
properties and even trigger ‘‘phase transitions’’ with irra-
diation of pump lights. A typical example is photoinduced
insulator-metal transition [1–3], where the time-resolved
optical conductivity [�ð�Þ, where � is the photon energy of
the probe light] exhibits a Drude-like peak in a low-energy
region that indicates photocarriers drive the system into a
metal. This ‘‘photodoping’’ opens up a new frontier for
controlling the phase of correlated electron materials as an
alternative to chemical doping.

Experimentally it is known for strongly correlated
electron systems that an excited state relaxes very fast
(&1 ps) after the pumping is turned off [3], which implies
that the system is subject to strong dissipation. Thus we
expect that during irradiation of the pump light the balance
between pumping and relaxation is rapidly achieved, and a
nonequilibrium steady state (NESS) emerges. To identify
NESS is indeed a long-standing issue in nonequilibrium
quantum statistical mechanics. For many-body electron
problems, NESS has been mainly studied for quantum
dot systems (e.g., Ref. [4]), while we are still some way
from a firm understanding of NESS for bulk systems that
might exhibit phase transitions. On the other hand, the
relevant dissipation mechanism is still not clear. Time
evolution of isolated correlated electron systems has been
studied for photoexcited one-dimensional systems [5] or
for the nonequilibrium Falicov-Kimball (FK) model [6,7].
These studies, however, do not elaborate the role of extrin-
sic dissipation that can be relevant to the long-time steady-
state behavior [8].

Motivated by these, we pose two issues here: (i) can we
present a general argument for NESS determined by dis-
sipation in a photoirradiated electron system, and (ii) are
there novel phenomena that emerge specifically in non-
equilibrium? For the former we have performed an exact
analysis of NESS for the FK model in the framework of the
Floquet technique [9,10] as combined with the dynamical

mean-field theory (DMFT) [11]. For the latter, our new
finding in the observable�ð�Þ characteristic to NESS is dip
and kink structures around ��� (where � is the fre-
quency of the pump light), a midgap peak arising from
photoinduced Floquet subbands, and a negative peak (gain)
arising from a population inversion. These predictions
offer experimental opportunities to realize and control
the novel state with photoirradiation.
Model.—In order to include dissipation, let us consider a

system coupled to a heat bath with the total Hamiltonian

Htot ¼ Hsyst þHmix þHbath: (1)

As a solvable model for the heat bath, we take the
‘‘Büttiker probe’’ reservoir [12],

Hmix ¼
X
i

X
p

�
Vpðcyi bi;p þ byi;pciÞ þ

V2
p

"p
cyi ci

�
; (2)

Hbath ¼
X
i

X
p

"pb
y
i;pbi;p; (3)

where cyi (byi;p) creates an electron (bath’s fermionic de-

grees of freedom), "p is the kinetic energy, and Vp is the

coupling to the mode p of the bath. The thermal bath is in
equilibrium with temperature T. Its chemical potential is
determined so that the current does not flow between the
bath and the system. In Hmix we have included a contour
term [the second term on the right-hand side of
Eq. (2)] that cancels the potential shift due to the coupling
to the bath. Let us now define a hybridization function
�ð!Þ ¼ P

p�V
2
p�ð!� "pÞ, and the system dissipates with

a damping rate �. For simplicity, we omit the ! depen-
dence of �.
When one starts driving the system with a continuous

pump light at time t ¼ 0, a transient dynamics from the
initial equilibrium state to an excited state should first
occur, but then the system will relax to a NESS within t�
��1. Here we assume that (i) NESS exists and (ii) NESS
should be independent of the initial condition and correla-
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tions between the initial state and NESS, since we expect
that those effects will be wiped out in the presence of
dissipation (while in the absence of dissipation this is
shown to not necessarily be the case [13]).

Based on these assumptions, NESS is determined as
follows. The absence of the initial correlations allows us
to use the Keldysh formalism. Since the pump light is an ac
electric field periodic in time, NESS is also time-periodic,
so that we can employ the Floquet method. After integrat-
ing out the bath degrees of freedom, we obtain the Dyson
equation in a Floquet matrix form [14] denoted by hats,

ĜR
k ð!Þ ĜK

k ð!Þ
0 ĜA

k ð!Þ

 !�1

¼ ðĜR0
k Þ�1ð!Þ ðĜ�1

k ÞK0ð!Þ
0 ðĜA0

k Þ�1ð!Þ

 !

þ i�1̂ 2i�F̂ð!Þ
0 �i�1̂

 !

� �̂
Rð!Þ �̂

Kð!Þ
0 �̂

Að!Þ

0
@

1
A; (4)

where ĜR;A;K (ĜR0;A0;K0) are, respectively, full (noninter-
acting) retarded, advanced, and Keldysh Green’s functions,

�̂
R;A;K

are respective self-energies, 1̂ the identity matrix,

and ðF̂Þmnð!Þ ¼ �mn tanh½ð!þ n�Þ=2T�. In Eq. (4),

ðĜR0�1
k Þmnð!Þ ¼ ð!þ n�þ�þ i�Þ�mn � ð�̂kÞmn with

� the chemical potential, � a positive infinitesimal, and
�̂k the Floquet matrix for the noninteracting Hamiltonian

[14]. The Keldysh component ðĜ�1ÞK0 in Eq. (4), on the
other hand, vanishes since it is proportional to i� while

there is a nonzero dissipation term 2i�F̂. This means that,

although ðĜ�1ÞK0 contains information on the initial con-
dition before the ac field is applied as well as on the way in
which the field is turned on, it is again wiped out due to
dissipation. NESS is thus determined without ambiguity by
the Dyson equation (4). We note that if we stand on a
phenomenological point of view, we are not restricted to
the specific model of the reservoir (2) and (3). Alter-
natively, we can start from Eq. (4), interpreting ��1 as
the relaxation time for a relevant dissipation mechanism
such as phonons or spins.

As one of the simplest models of correlated electron
systems we take the FK model [15,16],

Hsyst ¼
X
k

�k-eAðtÞc
y
kck þU

X
i

cyi cif
y
i fi; (5)

irradiated with a uniform pump light with the vector po-
tential AðtÞ, where �k is the energy dispersion of a single-

band system, U is the interaction strength, and fyi creates a
localized electron. This model is known [16] to undergo a
metal-insulator transition as we change U. We adopt the
model since (i) it has a simple optical excitation spectrum
with a single charge transfer (CT) peak around � ¼ �CT �
U (Fig. 1, black curves), (ii) charge and spin degrees of
freedom decouple from the outset so that we can concen-
trate on charge dynamics [we drop spin indices in Eq. (5)],

and (iii) it can be solved exactly within DMFT [11] even
out of equilibrium [6].
Method.—To treat periodically driven correlated elec-

trons, we can make use of the Floquet method combined
with DMFT [14] (an equivalent numerical technique was
used in Ref. [17]). Here we adopt this method for the
dissipative case including the Keldysh component using

Eq. (4). We consider the hypercubic lattice with �k ¼
�t�

P
d
i¼1 coski=

ffiffiffi
d

p
in d ( ! 1 in DMFT) dimensions.

For simplicity, we assume that AðtÞ ¼ AðtÞð1; 1; . . . ; 1Þ
with AðtÞ ¼ �E sin�t=� (where E is the amplitude of
the pump light). Then ð�̂kÞmn ¼ �kJm�nðeE=�Þ for m�
n even, or ivkJm�nðeE=�Þ for m� n odd [14] with vk ¼
t�
P

d
i¼1 sinki=

ffiffiffi
d

p
and JnðzÞ the nth order Bessel function.

We take t� as the unit of energy. The integration over kmay

be done with the joint density of states �ð�; vÞ ¼ P
k�ð��

�kÞ�ðv� vkÞ ¼ e��2�v2
=� [18].

The optical conductivity is defined in such a way that the
current change due to an infinitesimal probe light �Ee�i�t

(which we assume to be parallel to the pump light) be

�jðtÞ ¼ �ð�Þ�Ee�i�t þP
n�0ð� � �Þ�Ee�ið�þn�Þt, and is

given by Kubo-like formula [19]

�ð�Þ ¼ �0

�

X
k

1

	

Z 	=2

�	=2
d�t

�
��k�eAð�tÞG<

k ð�t; �tÞ

þ
Z 1

0
dtei�th½jkð�tþ t=2Þ; jkð�t� t=2Þ�i

�
; (6)

with �0 � e2=d, 	 � 2�=�, G< the lesser Green’s func-
tion, ½ ; � the commutator, h� � �i the statistical average, and
jkðtÞ ¼ vk�eAðtÞc

y
k ðtÞckðtÞ. In the limit E ! 0, we repro-

duce the equilibrium linear-response theory.
In calculating �ð�Þ, we divide Eq. (6) into two parts: the

bubble diagram and the vertex correction [see the inset of
Fig. 1(b)]. The former for Re�ð�Þ is written as

��0

�

X
k

Z �=2

��=2
d!Tr½v̂kÂkð!þ �Þv̂kN̂kð!Þ

� v̂kÂkð!Þv̂kN̂kð!þ �Þ�; (7)

where Âkð!Þ ¼ i½ĜR
k ð!Þ � ĜA

k ð!Þ�=2�, N̂kð!Þ ¼
�iĜ<

k ð!Þ=2�, the trace runs over the Floquet indices,
and the bare vertex function ðv̂kÞmn ¼ vkJm�nðeE=�Þ for
m� n even, or �i�kJm�nðeE=�Þ for m� n odd.
The vertex correction to �ð�Þ, on the other hand, exactly

vanishes in equilibrium within DMFT due to the odd parity
of vk. However, this no longer holds for nonequilibrium
cases, since the bare vertex vk�eAðtÞ is generally not parity

odd.We note that the vertex correction strongly depends on
the relative polarization of the pump and probe lights. A
virtue of the Floquet formalism is that the vertex correction
can be calculated exactly with the self-consistent equations
for dressed vertex functions [19]. In practical calculations,
we introduce a cutoff for the Floquet matrix size (typi-
cally 7), for which we have checked the error is small
enough. In the following we put � ¼ 0:05, T ¼ 0:05, and
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U ¼ 3 (so the system is insulating), and set the system at
half filling for both c and f electrons.

Numerical results.—We show the results for �ð�Þ in
Fig. 1 for three cases: (a) the frequency of the pump light
� ¼ 1:8<�CT �U ¼ 3, (b) 2:7 & �CT, and (c) 3:3 *
�CT. When the pump light is absent (E ¼ 0, black curves
in Fig. 1), an optical gap is clearly seen in the low-energy
region. As we increase the amplitude E, we find that CT
peak (���CT) collapses in all the three cases, which is
due to the bleaching effect. On the other hand, the low-
energy behavior of �ð�Þ is dramatically different for the
three cases: In Fig. 1(b), a positive peak appears around
�� 0, which implies that the system is driven into a
metallic state. Strikingly, in Fig. 1(c) we find a negative
weight (hatched in Fig. 1), which suggests that the system
has some energy gain. In the case of Fig. 1(a) where one-
photon process is forbidden due to �<�CT �U, we can
notice a midgap absorption around �� 1:2 with a positive
or negative weight in �� 0.

We also find that there are new features, besides the low-
energy behavior, appearing around the pump frequency
��� in all the three cases: a kink in Fig. 1(a) and dips
in Figs. 1(b) and 1(c). These features are unique to NESS,
and are not seen in equilibrium. To reveal their origins of
the newly found features, let us first clarify the effect of the
vertex correction by comparing the results with and with-
out the correction (the solid lines and dashed lines in Fig. 1,
respectively). We find that the correction can contribute to
�ð�Þ quite significantly around ���, creating the kink

[Fig. 1(a)] and dip [Figs. 1(a) and 1(c)] structures. Since
there is no such correction in equilibrium, these structures
are a genuine quantum many-body effect unique in non-
equilibrium. We emphasize that the effect is distinct from
the so-called ‘‘hole burning’’ effects observed in inhomo-
geneous systems [20].
Other features can be well captured by the bubble dia-

gram (7). To analyze them, we calculate time-averaged lo-

cal density of states (DOS) Að!þ n�Þ ¼ P
kðÂkÞnnð!Þ,

time-averaged density of occupied states Nð!þ n�Þ ¼P
kðN̂kÞnnð!Þ (Fig. 2, left-hand panels), and an effective

distribution feffð!Þ ¼ Nð!Þ=Að!Þ (right-hand panels).
In the absence of the pump light [E ¼ 0, Fig. 2(a)] we

can see an insulating state equilibrated with the Fermi
distribution. As the pump field is turned on, DOS changes
in different manners according to which regime� belongs
to: For ���CT DOS hardly changes [Figs. 2(d)–2(g)],
and the energy gap remains [Figs. 2(e) and 2(g)] even
when the CT peak in �ð�Þ almost disappears [Figs. 1(b)
and 1(c)]. For�<�CT in Figs. 2(b) and 2(c), by contrast,
the DOS is modulated to have photoinduced midgap states,
which we can assign to the Floquet subbands [14] (a set of
replicas of the original band with a spacing �). These
states are responsible for the midgap peak in �ð�Þ
[Fig. 1(a)] corresponding to one-photon process with ab-
sorption or emission energy �CT ��� 1:2.
Let us turn to the distribution (Fig. 2, right-hand panels).

It is greatly modified by the pump light, where electrons
occupying the lower band are pushed to the upper band
absorbing the photon energy n�, and become photocar-
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FIG. 2. Left: Time-averaged density of states Að!Þ (solid
curves) and time-averaged density of occupied states Nð!Þ
(shaded regions) for (a) E ¼ 0, (b),(c) � ¼ 1:8, (d),
(e) � ¼ 2:7, and (f),(g) � ¼ 3:3 with several E. Right: The
corresponding effective distributions feffð!Þ ¼ Nð!Þ=Að!Þ.
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FIG. 1 (color online). Real part of the optical conductivity
�ð�Þ (solid lines) in units of �0 for (a) � ¼ 1:8, (b) 2.7, and
(c) 3.3. The dashed lines illustrate (for specific values of E) the
results without the vertex correction. The arrows indicate the
frequency � of the pump light. Inset in (b) depicts diagrams of
the bubble and the vertex correction.
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riers. What is newly found here is that the nonequilibrium
distribution feffð!Þ becomes highly nonmonotonic with
characteristic periodic structures (the period ��) as
clearly displayed in the right-hand panels of Fig. 2. Since
we cannot fit feffð!Þ to the Fermi distribution with an
elevated temperature, this is again a genuinely nonequilib-
rium effect, where heating picture is not applicable.

The low-energy behavior of �ð�Þ can also be explained
with the distribution. For� ¼ 2:7 & �CT, electrons in the
upper part of the lower band tend to be excited into the
lower part of the upper band [Figs. 2(d) and 2(e)], whereas
electrons in the lower part of the lower band tend to be
excited into the upper part of the upper band for � ¼
3:3 * �CT [Figs. 2(f) and 2(g)]. In the former distribution,
electrons prefer to absorb infinitesimal energy rather than
emit, which is why the photocarriers induce a Drude-like
peak despite the energy gap remaining in the DOS. In the
latter, a population inversion within each band is realized
in the steady state, giving a negative weight in �ð�Þ. This
implies an energy gain, i.e., a transmitted light acquires
intensity stronger than the incident light. A negative �ð�Þ
is also observed for � ¼ 1:8<�CT and sufficiently large
E [Fig. 1(c)], which is now explained with two-photon
processes, with absorption energy �2� * �CT.

How does the nature of the low-energy metallic peak in
Fig. 1(b) evolve with the pump light amplitude E? We
fit the deviation of �ð�Þ from the equilibrium one,
��ð�Þ ¼ �ð�Þ � �ð�ÞjE¼0, to a Drude-like expression
�0t

�D
=½�ð�2 þ 
2Þ� by least squares. Here the weight
D and the width 
 are fitting parameters, and the fitting is
performed for a low frequency region (� < 0:8t�, here),
with the rms error turning out to be <4%. The result in
Fig. 3 shows that D starts to grow nonlinearly and is
saturated around E� 2. We do not have a phase transition
with singularity, but we do have a crossover from an
insulator to a metal. 
, on the other hand, is nearly constant
against E. This behavior is similar to the chemically doped
FK model, where a single-particle excitation has a finite
lifetime at T ¼ 0 [16], so that the photoinduced state is
also a non-Fermi-liquid metal. The inset in Fig. 3 indi-
cates D / E2 for small E, which can be understood from

the third-order nonlinear optical process, where the cor-

rection to �ð�ÞjE¼0 is given as ��ð�Þ / � Im�ð3Þð��;�;
��; �ÞE2 in terms of the nonlinear optical susceptibility

�ð3Þ (optical Kerr effect) [20].
Conclusion.—We have shown how a nonequilibrium

steady state is determined for photoexcited correlated elec-
trons (in the Falikov-Kimball model) by introducing the
fermionic bath model. This has enabled us to predict the
features in the optical conductivity that comprise kink and
dip structures, midgap band, as well as negative peaks
(gain) as hallmarks of the nonequilibrium. Future problems
include elaborations on the coherence of the pump light,
dependence on the nature of dissipation, and robustness of
excited states against ultrafast relaxations.
We thank Keiji Saito for a discussion on the bath model.
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