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We investigate the stability of a quadratic band-crossing point (QBCP) in 2D fermionic systems. At the

noninteracting level, we show that a QBCP exists and is topologically stable for a Berry flux �2� if the

point symmetry group has either fourfold or sixfold rotational symmetries. This putative topologically

stable free-fermion QBCP is marginally unstable to arbitrarily weak short-range repulsive interactions.

We consider both spinless and spin-1=2 fermions. Four possible ordered states result: a quantum

anomalous Hall phase, a quantum spin Hall phase, a nematic phase, and a nematic-spin-nematic phase.
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Introduction.—In multiband fermionic systems, a band-
crossing point (BCP) is a point in the Brillouin zone where
two bands cross. As the chemical potential reaches a BCP,
the Fermi surface shrinks to a point and new phenomena,
not described by a Fermi liquid, result. The simplest and
best studied is the case of a linear band crossing, whose low
energy physics is described by a Dirac fermion. Dirac
fermions are a good description of the low energy states
of nodal superconductors, graphene, and zero gap
semiconductors.

In general, a Dirac point in a band structure is robust
with respect to small changes in the effective potential
which preserve the symmetries of the crystal, as has been
extensively shown in various contexts [1–4]. Moreover,
short-range electron-electron interactions are perturba-
tively irrelevant for space dimension d > 1. Thus, there
is a stable phase with free gapless Dirac fermions which
becomes unstable above a critical interaction strength cor-
responding to a quantum critical point beyond which lie
phases with spontaneously broken space or point group
symmetries and/or broken time-reversal invariance [5–7].

In this Letter, we consider a system with a quadratic
band-crossing point (QBCP) somewhere in its 2D Brillouin
zone. This problem has not been discussed in depth, and
only a few aspects have been analyzed. The perturbative
stability of a QBCP was studied for 2D noninteracting
systems with C4v symmetry in Ref. [8]. For interacting
fermions, it was noted in Ref. [9] that a QBCP in 2D has
instabilities, for arbitrarily weak interactions, leading to
the spontaneous breaking of rotational symmetry (nematic
phase) or time-reversal invariance, but its consequences
were not explored in depth.

We begin by analyzing the general symmetry principles
that protect a QBCP in lattice models of noninteracting
fermions. We find that QBCPs are protected by time-
reversal symmetry and C4 or C6 rotational symmetry.
Explicit examples of lattice models with both symmetries
are presented. We show that short-range repulsive interac-

tions are marginally relevant in the renormalization group
(RG) sense. The symmetry breaking phases and phase
transitions, both quantum and thermal, are investigated
by an RG analysis and mean-field approximations, both
presumably reliable at weak coupling.
We determined the structure of the phase diagrams for

both spinless and spin-1=2 fermions. In the spinless case,
the leading weak-coupling instability is to a gapped phase
with broken time-reversal invariance, a quantum anoma-
lous Hall (QAH) effect, and topologically protected edge
states. For stronger interactions, there is a subsequent
transition to a nematic Dirac phase and an intermediate
phase with QAH-nematic coexistence. For spin-1=2 fermi-
ons, the phase diagram is more complex: in addition to
spin-singlet QAH and nematic phases, there are also a spin-
triplet quantum spin Hall (QSH) phase [10] and a nematic-
spin-nematic (NSN) phase [11–13].
Quadratic band-crossing point.—A BCP carries quan-

tized Berry flux [14] as required by time-reversal symme-
try: �i

H
� dk � hc ðkÞjrkjc ðkÞi ¼ n�, where � is a

contour in the momentum space enclosing the BCP,
c ðkÞ is the Bloch wave function in a band involved in
the band crossing, and n is an integer. For a Dirac point, the
Berry flux is ��. Instead, the Berry flux at a QBCP is
either 0 or �2� [9]. The zero flux QBCP is an accidental
band crossing, which can be removed by infinitesimal band
mixing without breaking any symmetries, but a QBCP with
�2� flux is robust and more interesting.
A natural question to ask is if a QBCP is protected by the

symmetries of the noninteracting system. In general, there
are two ways to remove a QBCP. One way is to split it into
several Dirac points while preserving the total Berry flux.
A QBCP with flux 2�, for example, can be split into two
separate Dirac points each with flux �, or three Dirac
points with flux � and one additional Dirac point with
��. The former case in general breaks the point group
symmetry leaving, at most, a twofold rotational symmetry
unbroken. The latter case can take place while preserving a
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threefold rotational symmetry, such as the case of bilayer
graphene [15,16]. For a QBCP with a fourfold or sixfold
symmetry axis, the split into Dirac points cannot occur
without breaking that symmetry. The alternative is to open
a gap by breaking time-reversal symmetry or a symmetry
that is formally similar, such as the combined space and
spin symmetry whose breaking leads to a spontaneous
quantum spin Hall state, as discussed below. Thus, for a
QBCP (with Berry flux �2�) to be stable without fine
tuning, two conditions are required: a) the system must be
time-reversal invariant, and b) the QBCP must have C4 or
C6 symmetry.

An example of a QBCP in 2D with C4 symmetry can be
found in the checkerboard lattice [9] Fig. 1(a). This lattice
can be regarded as the 2D projection of a 3D pyrochlore
lattice. It is also the oxygen lattice in a CuO2 plane of the
cuprates. With one orbital per site, there are two bands
crossing at a QBCP at (�, �) with a fourfold rotational
symmetry. At half filling, the QBCP is at the Fermi level.
An example of a QBCP with C6 symmetry is a tight-
binding model on a Kagome lattice, which has three bands.
The middle band touches the bottom band at (0, 0), result-
ing in a QBCP with sixfold rotational symmetry. It lies at
the Fermi level at 1=3 filling.

In the presence of weak interactions, a BCPmay become
unstable if interactions are relevant in the RG sense. In 2D,
a QBCP has a finite one-particle DOS, which implies that
short-range interactions are marginal at tree level. We will
show below, that at a 2D QBCP, a short-range repulsive
interaction is marginally relevant, and destabilizes this free
fermion fixed point in weak coupling, leading to a state
which spontaneously breaks one of the symmetries that
otherwise would protect the QBCP.

General model.—We first formulate the theory of pos-
sible symmetry breaking phases in a general way. We begin
with the spinless-fermion case. Near a QBCP, in the low
energy regime, we have two species of interacting charged
Fermi fields, c 1 and c 2, whose Hamiltonian is

H ¼
Z

dr½�yðrÞH 0�ðrÞ þ Vc y
1 ðrÞc 1ðrÞc y

2 ðrÞc 2ðrÞ�;
(1)

where �y ¼ ðc y
1 ; c

y
2 Þ, � is its conjugate, and V is the

coupling constant of the interaction.
The band structure near the QBCP is obtained by diago-

nalizing 2� 2 Hermitian matrix H 0ðkÞ for all Bloch-
wave vectors in the neighborhood of the band crossing
point, jkj � 1. Quite generally, we can choose the identity
matrix I and the two real Pauli matrices �x and �z as a
basis [17] and write H 0ðkÞ as [18]

H 0ðkÞ ¼ dII þ dx�
x þ dz�

z; (2)

where dI ¼ tIðk2x þ k2yÞ, dx ¼ 2txkxky, and dz ¼
tzðk2x � k2yÞ. The d-wave symmetry of dx and dz distin-

guishes a QBCP from a Dirac point in which their counter-
parts have a p-wave symmetry. It is this d-wave nature that

gives rise to the�2� Berry phase of a QBCP. For a QBCP
with a C6 rotational symmetry, jtxj ¼ jtzj. If the system has
particle-hole symmetry, tI ¼ 0. The condition jtIj< jtxj
and jtIj< jtzj is required to ensure that away from the
QBCP, one of the bands lies above the degenerate point,
and the other band lies below.
At V ¼ 0, in the model of Eq. (1), the fermions have a

finite DOS but do not have a Fermi surface. They have a
dynamic critical exponent z ¼ 2, and an effective dimen-
sion deff ¼ dþ z ¼ 4 [19]. � has dimension one ½�� ¼
1, and the only local four-fermion operator allowed is
marginal since 4½�� ¼ deff . There is a single dimension-
less coupling constant g ¼ V=jtxj.
This system is similar to d ¼ 1 spinless fermions, a

system with two Fermi points and dynamic critical expo-
nent z ¼ 1. In the 1D case, the Fermi field has scaling
dimension 1=2, so there is only one interaction, four-Fermi
backscattering, which is potentially important. However,
due to a cancellation between the Cooper channel and the
bubble term in 1D, the interaction is exactly marginal to all
orders in perturbation theory [20], which is the origin of
Luttinger liquid behavior in 1D. In contrast, no similar
cancellation occurs for fermions in 2D with z ¼ 2.
Although the 4-Fermi interaction is superficially marginal
it is actually marginally relevant. We find that to one-loop
order, the RG beta function for g ¼ V=jtxj is

�ðgÞ ¼ dg

dl
¼ �g2 þOðg3Þ; (3)

where � ¼ 1
2�2 K½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðtz=txÞ2

q
�, l is a momentum rescal-

ing k ! ke�l, and KðxÞ is the complete elliptic integral.
For jtxj ¼ jtzj, i.e., a QBCP with C6 symmetry, � ¼
ð4�Þ�1 [21]. Hence, Eq. (3) implies that for g > 0, the
effective coupling constant flows to strong coupling.
To explore the consequences of this instability, we in-

vestigated, in a mean-field level, possible orderings of
bilinear order parameters:

� ¼ h�yðrÞ�y�ðrÞi; Q1 ¼ h�yðrÞ�z�ðrÞi;
Q2 ¼ h�yðrÞ�x�ðrÞi: (4)

(a) (b)

FIG. 1 (color online). (a) A checkerboard lattice and (b) a
Kagome lattice. The arrows represent currents in a spontane-
ously generated QAH state that breaks the time-reversal sym-
metry. See text for details.
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� is the order parameter of a time-reversal symmetry
breaking gapped QAH phase [3,7]. This phase has a
zero-field quantized Hall conductivity �xy ¼ e2=h. Q1

and Q2 describe the nematic phases in which the C4 or
C6 rotational symmetry is broken down to C2 by splitting
the QBCP into two Dirac points located along the direction
of one of the main axes (Q1), or along a diagonal (Q2). The
nematic phase is an anisotropic semimetal. Unlike in gra-
phene, where the two Dirac points have Berry fluxes � and
��, in the nematic phase, both Dirac points have the same
Berry flux. There is also a phase in which nematic (Q1 � 0
orQ2 � 0) and QAH orders (� � 0) coexist, an insulating
analog of the metallic time-reversal breaking nematic �
phases of Ref. [9].

Since there is only one coupling constant (V) in Eq. (1),
the weak-coupling ordering tendencies are determined by
the logarithmically divergent normal state susceptibilities
�� (QAH order) and �Q1

and �Q2
(nematic order). For

general tx and tz, they satisfy �� ¼ �Q1
þ �Q2

. Hence,

�� > �Qi
(i ¼ 1, 2), so the leading weak-coupling insta-

bility is to the (gapped) QAH state.
The mean-field Hamiltonian is

HMF¼
Z
dr�yðrÞ

�
H 0�V

2
ðQ1�zþQ2�xþ��yÞ

�
�ðrÞ

þV

4

Z
drðQ2

1þQ2
2þ�2Þ: (5)

By minimizing the ground state energy of HMF, we find
that at weak coupling, the ground state is indeed the QAH
phase, with a gap���expð�2=�gÞ (� is a cutoff) and a
mean-field critical temperature Tc � �, consistent with the
scaling predicted by the RG. A 3D example of the QAH at
finite coupling is discussed in Ref. [22].

Mean-field theory also predicts nematic phases provided

that irrelevant operators, such as
R
drdr0

P
i¼1;2Uðr�

r0Þc y
i ðrÞc iðrÞc y

i ðr0Þc iðr0Þ, are also included. The nematic
phase Q1 is energetically favored at small V > 0 and U <
0 if jU=Vj is large enough. As jU=Vj is reduced, the
nematic phase gives way to the QAH phase (and to a mixed
phase).

Lattice models.—We consider the following minimum
model on a checkerboard lattice with a QBCP:

H ¼ X
ij

� tijc
y
i cj þ V

X
hiji

cyi cic
y
j cj; (6)

where tij is the hopping amplitude between sites i and j and

V > 0 is the nearest-neighbor repulsion. Here, tij ¼ t, t0,
t00, respectively, for nearest neighbors, and next-nearest
neighbors connected (or not) by a diagonal bond,
Fig. 1(a). There are two sublattices A and B. The fermion

spinor is �y ¼ ðcyA; cyBÞ. The parameters of the free-

fermion Hamiltonian [Eq. (2)] are dI ¼ �ðt0 þ t00Þ �
ðcoskx þ coskyÞ, dx ¼ �4t coskx2 cos

ky
2 , and dz ¼

�ðt0 � t00Þðcosky � coskxÞ. The QBCP is M ¼ ð�;�Þ, at
the corner of the Brillouin zone. The parameters of the

continuum Hamiltonian (near the QBCP) of Eq. (1) are
tI ¼ ðt0 þ t00Þ=2, tx ¼ t=2, tz ¼ ðt0 � t00Þ=2. The order pa-

rameters are Q1 ¼ 1
4

P
�hcyA;icA;i � cyB;iþ�cB;iþ�i (‘‘site ne-

matic’’), Q2 ¼ 1
2

P
�D�RehcyA;icB;iþ�i (‘‘bond nematic’’),

and � ¼ 1
2

P
�D�ImhcyA;icB;iþ�i (QAH), where � ¼

�x̂=2� ŷ=2 connects nearest neighbors. D� ¼ �1,
D�ðx̂=2þŷ=2Þ ¼ 1, and D�ðx̂=2�ŷ=2Þ ¼ �1.

A mean-field theory analysis [23] [similar to Eq. (5)] of
the lattice model, Eq. (6), yields the T-V phase diagram of
Fig. 2. (The details depend on t0=t and t00=t.) A QAH phase
is found for V small and below a critical temperature. This
phase has a zero-field quantized Hall conductivity e2=h,
and the quasiparticle spectrum has topologically protected
chiral edge states, as predicted by general considerations
[24]. A site-nematic phase is found for V � jt0 � t00j, while
the bond-nematic is not favored. For jt0j � jt00j and
jt00j=jt0j � 1, there is a direct nematic-QAH first-order
transition. If jt00j=jt0j � 1, there is also a coexisting QAH
+nematic phase. For other values, there are a direct first-
order transition and a coexisting phase.
Near a QBCP, a next-nearest-neighbor attraction Vnnn <

0 [25] generates the (irrelevant) interaction U. For
jVnnn=Vj * 1, a site-nematic phase (Q1) becomes stable,
even at weak coupling. A site-nematic phase is stabilized at
large enough V > 0 (Vnnn ¼ 0). In the strong coupling
limit, at this filling, this system is known to be in an
insulating site-nematic phase [26].
Spin-1=2 fermions.—Let us consider briefly the case of a

system of spin-1=2 fermions at a QBCP. Details will be
given in Ref. [23]. We consider the four shortest-range
interactions on a lattice: (a) an on-site repulsive Hubbard
U, (b) a nearest-neighbor repulsion V, (c) a nearest-
neighbor exchange interaction J, and (d) a pair-hopping
term W. In addition to spin-singlet order parameters
[c.f. Eq. (5)], there are also spin-triplet order parameters,

0.0 0.5 1.0 
0.000

0.004

0.008
B

A

Normal

QAH

Nematic

T

V

FIG. 2 (color online). Mean-field T-V phase diagram of a half-
filled checkerboard lattice with t0=t ¼ 0:5, t00=t ¼ �0:2.
Nematic and QAH orders coexist in the shaded area. Thick
(thin) lines are first (second) order transitions. A is a bicritical
point, and B is a critical-end point.
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~Q t
1¼h�yðrÞð ~�	�zÞ�ðrÞi; ~Qt

2¼h�yðrÞð ~�	�xÞ�ðrÞi;
~S¼h�yðrÞð ~�	IÞ�ðrÞi; ~�

t¼h�yðrÞð ~�	�yÞ�ðrÞi;
(7)

where ~� are the three Pauli matrices. Here, ~S is the spin

density. For ~Qt
1 � ~0, the QBCP splits into four Dirac points

displaced along the main axes. This state has reversed spin
polarization along x and y axes. For a QBCP with C4

symmetry, the charge sector is still C4 invariant, but the
spin sector changes sign under a rotation by �=2. Thus,
~Qt
1 � ~0 is an NSN state [11–13]. ~Qt

2 � ~0 describes NSN
order along the diagonals.

A state with ~�
t
� ~0 is a QSH phase [7,27–29] with

helical edge states [30,31]. In this phase, the two spin
components have opposite Hall conductivity. The QSH
topological insulator has a quantized spin Hall conductiv-
ity, and it is a spin-triplet version of the QAH phase. It is an
insulating analog of the � phase of Refs. [13,32].

A scaling analysis similar to the spinless case finds six
marginally relevant operators, associated with the four
nematic order parameters (singlet and triplet) and the
QAH and QSH orders. We have obtained the phase dia-
gram in mean-field theory for spin-1=2 fermions on a
checkerboard lattice at a QBCP with U > V > 0 at T ¼
0 [33]. For simplicity, we take t, t0, and t00 such that tx � tz,
and W ¼ 0. Once again, all the susceptibilities are loga-
rithmically divergent with � ~�

¼ ��, and � ~Qi
¼ �Qi

(i ¼
1, 2), so the interactions are marginally relevant. For U >
2V > 0, the system is in the NSN phase at low tempera-
tures. For 2V > U > 0, we find the QAH phase for J > 0,
and the QSH phase for J < 0. Both gapped phases are
topological insulators. The gaps and critical temperatures
obey a scaling law similar to the spinless case [23]. For
U ! 1 (and J ¼ 0), there is an NSN state, while V ! 1
stabilizes a nematic phase.

Using RG methods and mean-field theory, we showed
that a system of interacting fermions, with or without spin,
at a QBCP have topological insulating QAH or QSH
phases, at arbitrarily weak short-range repulsive interac-
tions. These perturbatively accessible topological insulat-
ing phases are due to spontaneous symmetry breaking,
described by order parameters, and are not due to spin
orbit effects in the band structure. At intermediate cou-
pling, we also find nematic (and coexisting) phases. Using
large N methods and a 2þ � expansion, we infer the
existence of these phases in 3D (similar to those of
Ref. [22]), but at a finite critical coupling [23].
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