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We investigate the effect of a periodic potential on the electronic states and conductance of graphene. It

is demonstrated that for a cosine potential VðxÞ ¼ V0 cosðG0xÞ, new zero energy states emerge whenever

J0ð 2V0

@vFG0
Þ ¼ 0. The phase of the wave functions of these states is shown to be related to periodic solutions

of the equation of motion of an overdamped particle in a periodic potential, subject to a periodic force.

Numerical solutions of the Dirac equation confirm the existence of these states, and demonstrate the

chirality of states in their vicinity. Conductance resonances are shown to accompany the emergence of

these induced Dirac points.

DOI: 10.1103/PhysRevLett.103.046809 PACS numbers: 73.21.�b, 73.20.Hb

The laboratory realization of graphene [1–3], a two-
dimensional honeycomb lattice of carbon atoms, has mo-
tivated intense theoretical and experimental investigations
of, among many other things, its transport properties [4].
Graphene differs from conventional two-dimensional elec-
tron systems in that it supports two inequivalent Dirac
points, through which the Fermi energy passes when the
system is nominally undoped. The chirality of the electron
wave functions near the Dirac points severely limits elec-
tron backscattering, enhancing the conductivity of the
system [5]. The unusual transport properties associated
with the Dirac points may in principle be explored and
exploited if the edge structure can be controlled [6,7], or by
application of nonuniform potentials, such as in a p-n
junction [8–12]. Periodic potentials may be induced by
interaction with a substrate [13–15] or controlled adatom
deposition [16]. Recently, the existence of periodic ripples
in suspended graphene has been demonstrated [17]; in a
perpendicular electric field this would also induce a peri-
odic potential [18,19].

In this Letter we discuss the effects of a one-dimensional
superlattice potential on the transport properties of gra-
phene. Previously it has been noted that such a potential
may create a strong anisotropy in the electron velocity
around the Dirac point [20,21]. In fact this behavior is a
precursor to the formation of further Dirac points in the
band structure of the system. We will show that such new
zero energy states of the Dirac equation are associated with
how the phase of the wave function varies with position
along the superlattice direction, and is connected with the
dynamics of a highly overdamped particle subject to peri-
odic potentials both in space and time. From an analysis of
this problem we demonstrate that the emergence of new
Dirac points is controlled by the parameter V0=G0, where
V0 is the potential amplitude (assumed to be a cosine) and
L0 ¼ 2�=G0 is the period. New Dirac points emerge

whenever J0ð 2V0

@vFG0
Þ ¼ 0, where J0 is a Bessel function

and vF the speed of the Dirac fermions in the absence of
the potential. The total number of Dirac points (associated
with a single valley and spin) is thus 2N þ 1, with N the

number of zeros of J0ðxÞ, with jxj< 2V0

@vFG0
. We verify the

existence of these new zero energy points numerically, and
demonstrate the chirality of the wave functions in their
vicinity.
We find that, when stabilized, the new Dirac points

associated with the superlattice potential have dramatic
consequences for transport along the superlattice axis.
For undoped graphene, the conductivity � along this di-
rection depends only on the ratio V0=G0, and supports
strong resonances at the values of V0=G0 where the new
zero energy states appear. This is illustrated in Fig. 1. Also
illustrated [Fig. 1(b)] is the Fano factor [22], a measure of
the degree of correlation in current noise due to the dis-
creteness of the electron charge, which typically has the
value 1=3 for diffusive transport, and vanishes when the
transport is ballistic. Despite the absence of disorder in this
system, both the Fano factor and the scaling of the con-
ductivity with system length Lx suggest that the transport
has a diffusive character for most values of V0=G0, which
becomes ballistic in the vicinity of the resonances. The
periodic appearance of the conductance resonances as a
function of V0=G0 provides a clear signature of the new
zero energy states as they emerge.
Zero energy states.—We consider an external potential

of the form VðxÞ ¼ V0 cosG0x, where the period of the
perturbation is much larger than the graphene lattice pa-
rameter, a, and the amplitude V0 is much smaller than the
energy bandwidth of the graphene � orbitals. In this situ-
ation the low energy properties for electrons in a single
valley and a given spin are well described by the massless
Dirac Hamiltonian with a potential,

H ¼ @vFð�i�x@x � i�y@yÞ þ VðxÞI (1)

where �x;y are the Pauli matrices, and I is the identity
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matrix. The wave functions which this may multiply have
two components,�A;B, corresponding to the two triangular

sublattices that make up a honeycomb lattice.
To demonstrate the emergence of zero energy states, it is

convenient to implement a unitary transformation [23–25]

of the Hamiltonian, H0 ¼ Uy
1HU1, with

U1 ¼
e�ið�ðxÞ=2Þ �eið�ðxÞ=2Þ

e�ið�ðxÞ=2Þ eið�ðxÞ=2Þ

 !

and �ðxÞ ¼ 2

@vF

Z x

0
Vðx0Þdx0;

(2)

so that, for�A;BðrÞ ¼ eikyy�A;BðxÞ, the Hamiltonian acting

on the transformed wave functions Uy ~� is

H0 ¼ @vF
�i@x �ikye

i�ðxÞ

ikye
�i�ðxÞ i@x

 !
: (3)

For the cosine potential, ei�ðxÞ ¼ P
l¼1
l¼�1 J‘ð 2V0

@vFG0
ÞeilG0x,

where Jn is the nth Bessel function of the first kind.

For zero energy states, we search for solutions ofH0 ~� ¼
~0. Such solutions have the property �A ¼ ��

B. For a single
valley system this would mean the two components are
related by time reversal; this is not quite the case here
because time reversal in graphene also involves inter-
changing valleys. Writing �A ¼ j�Ajei�, we obtain a
single component equation

@xj�Aj þ kye
i��2i�j�Aj þ ið@�Þj�Aj ¼ 0: (4)

An analogous manipulation for the zero modes of the
Bogoliubov-de Gennes equation of states in a vortex of a
p-wave superconductor [26] yields a very simple value for
the phase �, and the resulting state is a Majorana fermion
due to the time-reversal relation between components. In
our case, we need to find solutions for � that are consistent
with the symmetries of the problem; when they exist the
resulting state is that of a real fermion, since the two
magnitudes �A;B are not truly related by time reversal.

The equation governing � is obtained by taking the imagi-
nary part of Eq. (4),

ky sinð�� 2�Þ þ @x� ¼ 0: (5)

The real part yields @xj�Aj þ ky cosð�� 2�Þj�Aj ¼ 0,

with the formal solution

j�Aj / exp

�
�ky

Z x

x0

cos½�ðx0Þ � 2�ðx0Þ�dx0
�
: (6)

Since ~� is a Bloch state of the superlattice, it must obey
the Bloch relation �A;Bðxþ L0Þ ¼ eikxL0�A;BðxÞ, with kx
the crystal momentum. For a zero energy state only kx ¼ 0
is possible. We then require (i) �ðxþ L0Þ ¼ �ðxÞ þ 2�m

with m an integer, and (ii)
RL0

0 cos½�ðxÞ � 2�ðxÞ� ¼ 0. To
see whether � can satisfy these relations, it is helpful to
recast Eq. (5) by writing ~� ¼ 2�� �, and x ! t, so that

� @t ~�� @t�þ 2ky sin~� ¼ 0: (7)

This is the equation of motion for the position ~� of an
overdamped particle (with unit viscosity), subject to a
periodic time-dependent force @t� and a spatially periodic
force 2ky sin~�. Despite the periodicity of the forces in-

volved, the generic solution to this equation is not periodic.
However, for certain parameters periodic solutions can be
found, which correspond to allowed zero energy solutions
of the Dirac equation in a periodic potential.
To see this, we solve Eq. (5) perturbatively in ky. Writing

� ¼ ky�
ð1Þ þ k2y�

ð2Þ þOðk3yÞ, one finds

�ð1Þ ¼ �
Z x

dx0 sin�ðx0Þ þ Cð1Þ

and �ð2Þ ¼ 2Cð1Þ Z x
dx1 cos�ðx1Þ

�
Z x

dx1
Z x1

dx2 sin�ðx2Þ þ Cð2Þ;

where Cð1;2Þ are constants of integration. Explicitly per-
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FIG. 1 (color online). (a) Conductivity and (b) Fano factor, as
function of V0 and for L0 ¼ 50a, for two different graphene
sample lengths containing 10 and 20 periods of the periodic
potential V0 cosG0x. Panel (c) shows the conductivity as a
function of V0=G0 as obtained from different superlattices’
potentials. This result indicates that the conductivity only de-
pends on V0=G0. Vertical lines indicate the position of the zeros
of J0ð 2V0

@vFG0
Þ.
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forming the integrations for the above two equations, one
finds that condition (i) can be satisfied if

k2y

�
2Cð1ÞJ0L0 �

X
‘odd

J‘
‘G0

L0

�
¼ 2�m: (8)

Here J0 and J‘ are Bessel functions evaluated at
2V0=@vFG0. Since we have employed a small ky expan-

sion, the only consistent solution is for m ¼ 0. In this case

Eq. (8) fixes Cð1Þ, and the resulting � (and the associated ~�)
is periodic. Condition (ii) may then be implemented to fix
the value of ky at which a zero mode appears,

�
ky
G0

�
2 ¼ � J0

2
P

‘1;‘2odd
J‘1J‘2J�‘1�‘2=‘1‘2

: (9)

Equation (9) predicts the presence of a zero mode when-
ever the right-hand side is positive. This turns out to occur

when x ¼ 2V0

@vFG0
is just above the values for which J0ðxÞ ¼

0; we have confirmed numerically that the sign of the
denominator on the right-hand side of Eq. (9) always works
out such that k2y > 0 in this situation. With increasing x, the

solution moves to larger jkyj until it diverges where the

three Bessel function sum vanishes, which is always prior
the next zero of J0ðxÞ. We note that since our approxima-
tion is only valid for small ky, Eq. (9) cannot accurately

predict the location of the zero energy states well away
from ky ¼ 0. However, since zero energy states can only

annihilate in pairs [27], we expect that once they emerge
from the origin, they should persist. We now show that a
numerical solution of the Dirac equation supports this
expectation.

Numerical studies.—Our expectations about the new
zero energy states can be confirmed by numerically solving
the Dirac equation in a periodic potential. To accomplish
this we represent the Hamiltonian H ¼ H0 þ V0 cosG0x
in a plane wave basis and diagonalize the resulting matrix
for momenta (kx, ky), with �G0=2< kx < G0=2. We have

checked that our results converge with respect to the num-
ber of plane wave states used.

Because of the chiral nature of the Dirac quasiparticles
the effect of the periodic potential is highly anisotropic: at
the kx ¼ 0, ky ¼ 0 Dirac point the group velocity is un-

changed in the direction of the superlattice but is strongly
reduced, even to zero in some cases, in the perpendicular
direction [20,28,29]. In Fig. 2 we plot, for different values
of V0, the lowest few energy eigenvalues as a function of ky
for kx ¼ 0 and L0 ¼ 50a. As V0 increases the group ve-
locity at the Dirac point decreases to zero [20,28,29], and
thereafter two zero energy states emerge from ky ¼ 0 as

the group velocity of the ky ¼ 0 Dirac point becomes finite

again. These are the new zero energy states discussed
above; we find that they emerge precisely when

J0ð 2V0

@vFG0
Þ ¼ 0. Upon further increase of V0, the group

velocity along kx at ky ¼ 0 becomes zero again and a

new pair of zero energy states emerge from ky ¼ 0, again

precisely at the next zero of J0ð 2V0

@vFG0
Þ ¼ 0. This pattern

continues to repeat itself with increasing V0. Further stud-
ies for different periodicities confirms the prediction that
the emergence of these points depends only on the ratio
V0=G0, precisely as predicted in the analysis of the pre-
vious section.
These zero energy points in fact represent new Dirac

points, as can be demonstrated by studying the chirality of
the wave functions in their vicinity. In Fig. 3 we plot the
expectation value of the pseudospin (h�xi, h�yi) for the
lowest positive energy eigenvalue as a function of crystal
momentum. One may see that this vector undergoes a 2�
rotation for any path enclosing one of the zero energy
states. The nonvanishing winding of this vector for such
paths is a clear signal of the Dirac-like nature of the
spectrum in the vicinity of a zero energy state.
Conductivity.—Using the transfer matrix method we

have computed the transmission probability through a
graphene strip of length Lx, containing Np periods of the

superlattice potential. We assume metallic contacts con-
nected to the strip may be modeled by heavily doped
graphene [30]. Boundary conditions are taken to be peri-
odic in the transverse direction, leading to transverse wave
functions which can be labeled by a momentum ky; this is

justified when the width of the strip, Ly, is much larger than

its length. From the transmission probability of each mode,
Tky , we obtain the conductanceG and the Fano factor (ratio

of noise power and mean current) F,

G ¼ 4
e2

h

X
ky

Tky F ¼
P

ky
Tkyð1� TkyÞP

ky
Tky

(10)

where the factor 4 accounts for the spin and valley degen-
eracy. The conductivity is related to the conductance via
geometrical factors, � ¼ G� Ly=Lx. In what follows we

work in the limit Ly � Lx.

For pristine graphene, V0 ¼ 0, the conductivity is inde-
pendent of Lx and takes the value �0 ¼ 4e2=�h, and the
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FIG. 2 (color online). Energy bands of graphene in the pres-
ence of a superlattice potential V0 cosG0x, as a function of ky
with kx ¼ 0, for several values of V0, in units @vF=a, and L0 ¼
50a.
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Fano factor takes on the universal value 1=3. In the absence
of disorder one might expect the conductivity of graphene
to be zero or infinity and the electrical current to be noise-
less. The deviation from these naive expectations, consis-
tent with diffusive transport, is a unique property of the
Dirac points, which has been interpreted in terms of the
spontaneous creation of virtual electron-hole pairs [30].

Figure 1 shows the conductivity and the Fano factor, as a
function of V0, for two graphene strips, respectively, con-
taining 10 and 20 periods of a potential of the form
V0 cosG0x. For finite values of V0, apart from some reso-
nances which we discuss momentarily, the system behaves
diffusively (F ¼ 1=3) and the conductivity is well defined.
Interestingly, between the peaks the overall scale increases
with V0, showing that the periodic potential tends to en-
hance the conductivity.

At certain values of V0 one observes peaks in the con-
ductance, for which the conductivity is not well defined
and the Fano factor tends to zero. These resonances occur
precisely whenever new zero energy states emerge from
the origin in k space, and represent a direct experimental
signature of their presence. We believe the resonances
occur because the group velocity vanishes when a zero
energy state emerges, leading to a strong enhancement of
the density of states. A further check that the resonances
are associated with the zero energy states is to see that they
depend on the ratio V0=G0; Fig. 1(c) demonstrates that this
is the case not just for the resonances but for the entire
conductance curve.

In summary, we have shown that a search for zero
energy states in graphene in a periodic potential shows
that they may be stabilized for large enough V0=G0, and
that their presence may be detected in the conductance of
the system. The generation of new Dirac points is reported
in Ref. [31], which focuses on different properties than the
ones described above.
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FIG. 3 (color online). Expectation value of the vector field
(�x, �y) of the lowest energy positive subband for a superlattice

of period 50a and V0 ¼ 0:1@vF=a. The zero energy Dirac points
at kx ¼ 0 are highlighted. High energy Dirac points with oppo-
site chirality also appear between the ky ¼ 0 Dirac point and the

superlattice induced Dirac points.
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