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We show that, when graphene is subjected to an appropriate one-dimensional external periodic

potential, additional branches of massless fermions are generated with nearly the same electron-hole

crossing energy as that at the original Dirac point of graphene. Because of these new zero-energy

branches, the Landau levels at charge neutral filling become 4ð2N þ 1Þ-fold degenerate (with N ¼
0; 1; 2; . . . , tunable by the potential strength and periodicity) with the corresponding Hall conductivity �xy

showing a step of size 4ð2N þ 1Þe2=h. These theoretical findings are robust against variations in the

details of the external potential and provide measurable signatures of the unusual electronic structure of

graphene superlattices.
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The physical properties of graphene [1–3] are currently
among the most actively investigated topics in condensed
matter physics. Graphene has the unique feature that the
low-energy charge carriers are well described by the two-
dimensional (2D) massless Dirac equation, used for mass-
less neutrinos, rather than by the Schrödinger equation
[2,3]. Moreover, graphene is considered to be a promising
candidate for electronics and spintronics applications [4].

It has been shown that, because of their gapless energy
spectrum and chiral nature, the charge carriers in graphene
are not hindered by a slowly varying electrostatic potential
barrier at normal incidence [5], analogous to the Klein
tunneling effect predicted in high-energy physics. Direct
evidences of Klein tunneling through a single barrier in
graphene [5] have been observed in recent experiments
[6,7].

Application of multiple barriers or periodic potentials,
either electrostatic [8–12] or magnetic [13–16], to gra-
phene has been shown to modulate its electronic structure
in unique ways and lead to fascinating new phenomena and
possible applications. Periodic arrays of corrugations [17–
19] have also been proposed as graphene superlattices
(GSs).

Experimentally, different classes of GSs have been fab-
ricated recently. Patterns with periodicity as small as 5 nm
have been imprinted on graphene through electron-beam
induced deposition of adsorbates [20]. Epitaxially grown
graphene on the (0001) surface of ruthenium [21–25] and
that on the (111) surface of iridium [26–28] also show
superlattice patterns with �3 nm lattice period. The am-
plitude of the periodic potential applied to graphene in
these surface systems has been estimated to be in the range
of a few tenths of an electron volt [22]. Fabrication of
periodically patterned gate electrodes is another possible
way of making GSs with periodicity close to or larger than
�20 nm.

The quantum Hall plateaus in graphene take on the
unusual values of 4ðlþ 1=2Þe2=hwhere l is a non-negative
integer [29]. The factor 4 comes from the spin and valley
degeneracies. In bilayer graphene, the quantum Hall pla-
teaus are at 4le2=h with l a positive integer [30]. These
unconventional quantum Hall effects have been experi-
mentally verified [2,3,31], providing evidences for 2D
massless particles in graphene and massive particles in
bilayer graphene.
In this Letter, we investigate the Landau levels (LLs) and

the quantum Hall effect in GSs formed by the application
of a one-dimensional (1D) electrostatic periodic potential
and show that they exhibit additional unusual properties.
We find that, for a range of potential shapes and parame-
ters, new branches of massless fermions are generated with
electron-hole crossing energy the same as that at the origi-
nal Dirac point of pristine graphene. These additional
massless fermions affect the LLs qualitatively. In particu-
lar, the LLs with energy corresponding to the Fermi energy
at charge neutrality (i.e., zero carrier density) become
4ð2N þ 1Þ-fold degenerate (N ¼ 0; 1; 2; . . . ), depending
on the strength and the spatial period of the potential
(pristine graphene corresponds to N ¼ 0). Accordingly,
when sweeping the carrier density from electronlike to
holelike, the quantum Hall conductivity in such a GS is
predicted to show an unconventional step size of 4ð2N þ
1Þe2=h that may be tuned by adjusting the external periodic
potential.
In our study, the electronic structure of the GSs is

evaluated using the methods developed in Ref. [9]; we
evaluate the band structure of the GS numerically by
solving the 2D massless Dirac equation with the external
periodic potential included using a plane wave basis.
Similarly, to obtain the LLs, the eigenstates of the GSs
under an external perpendicular magnetic field are ex-
panded with plane waves. We work in a Landau gauge
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with the vector potential depending on the position coor-
dinate along the direction of the periodicity of the GS, and
a zigzag form for the vector potential with a very large
artificial periodicity (large compared to the GS periodicity)
is employed to mimic a constant magnetic field near the
origin in position space [32]. We have checked that the LLs
are converged in energy to within less than 1%with respect
to the size of the supercell for the vector potential and the
kinetic energy cutoff for the plane waves. The size of the
largest supercell and that of the smallest sampling distance
in real space used are 400 and 0.05 in units of a single unit
cell, respectively.

Figure 1(a) shows a GS formed by a Kronig-Penney
type of electrostatic potential periodic along the x direc-
tion, with lattice parameter L and barrier width L=2.
Remarkably, unlike that in graphene [Fig. 1(b)], the band
structure in a GS [Fig. 1(c)] can have, depending on the
potential barrier height U0, more than one Dirac point with
kx ¼ 0 having exactly the same electron-hole crossing
energy [33]. As Fig. 1(c) shows, the number of Dirac points
for this type of GSs increases by two (without considering
the spin and valley degrees of freedom) whenever the
potential amplitude exceeds a value of

UN
0 ¼ 4�N@v0=L (1)

with N a positive integer. The value of the potential barrier
given in Eq. (1) corresponds to special GSs in which the
group velocity along the ky direction vanishes for charge

carriers whose wave vector is near the original Dirac cone
[e.g., the Dirac cone at the center in Fig. 1(c)] [34,35]. All
the findings in this study apply in general to GSs made

from a periodic potential which has both even and odd
symmetries, like a sinusoidal type of potential. The results
for GSs whose odd or even symmetry is broken are dis-
cussed in Ref. [36].
Figure 2 shows the evolution of the energy of the

electronic states with kx ¼ 0 for a GS depicted in Fig. 1
for several different values of U0. As stated above,
the group velocity along the ky direction becomes zero

near ky ¼ 0 when the barrier height is given by Eq. (1)

[Figs. 2(c) and 2(e)]. When U0 has a value between those
specific values, the positions of the additional new Dirac
points move away from the ky ¼ 0 point along the ky
direction with increasing U0. The complex behavior of
the zero-energy Dirac cones revealed by our numerical
calculations cannot be derived using perturbation theory
[12] because ky is not small compared to the superlattice

reciprocal lattice spacing 2�=L. Moreover, the pseudo-
spin character of these additional massless fermions [e.g.,
the left and the right Dirac cones (not the center one) in
Fig. 1(c)] are different from that of the original massless
Dirac fermions. For example, backscattering amplitude
due to a slowly varying potential within one of the new
cones does not vanish [36].
A natural question arising from this peculiar behavior in

the electronic structure of a GS, which is topologically
different from that of pristine graphene, is how the LLs are
distributed. Figure 3 shows the calculated LLs of the 1D
Kronig-Penney GSs depicted in Fig. 1 for various values of
U0 [37]. When the superlattice potential modulation is
moderate [Fig. 3(b)], the spacings between neighbor-
ing LLs become smaller than those in pristine graphene
[Fig. 3(a)], owing to a reduction in the band velocity. Once
U0 becomes larger than 4�@v0=L (¼0:4 eV for L ¼
20 nm), the zero-energy LLs (corresponding to zero carrier
density) become three-fold degenerate [Fig. 3(d)]. An im-
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FIG. 1 (color online). (a) Schematic diagram of a Kronig-
Penney type of potential applied to graphene with strength
U0=2 inside the gray regions and �U0=2 outside with lattice
period L and barrier width L=2. (b) Electron energy in units of
"L ( � @v0=L; for example, if L ¼ 20 nm, "L ¼ 33 meV) ver-
sus wave vector near the Dirac point in pristine graphene. (c) The
same quantity as in (b) for a GS with U0 ¼ 6�"L. (d) Number of
Dirac points (not including spin and valley degeneracies) in a GS
versus U0.
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FIG. 2 (color online). Electron energy (in units of "L ¼
@v0=L) versus ky with kx ¼ 0 in GSs shown in Fig. 1 for several

different values of barrier height U0 (specified in each panel in
units of "L).
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portant point to note is that this degeneracy is insensitive to
U0 over a range of U0 near 6�@v0=L because the topology
of the electron bands does not change with this variation
[41,43]. Moreover, even though the massless particles of
the different Dirac cones may have different band veloc-
ities, the degeneracy of the zero-energy LLs is not affected.

The dependence of the Hall conductivity �xy on the

charge carrier density n most directly reflects the degener-

acy of the LLs. Figure 4 schematically shows that, depend-
ing on the superlattice potential parameters, �xy of the GSs

considered has a 4ð2N þ 1Þe2=h step as the density is
scanned from holelike to electronlike carriers. (We have
put in the additional factor 4 coming from the spin and
valley degeneracies in this discussion and in Fig. 4.)
Because the degeneracy of the LLs in the 1D GSs is
insensitive to a variation in U0, this qualitative difference
in�xy of the 1D GSs from that of pristine graphene (Fig. 4)

is expected to be robust, and will provide a measurable
signature of the unique electronic structure of the 1D GSs.
In conclusion, we have shown that the electronic struc-

ture of 1D graphene superlattices can have additional Dirac
cones at the same energy as the original cones at the K and
K0 points of pristine graphene. These new massless parti-
cles contribute to a 4ð2N þ 1Þ-fold degeneracy in the zero-
energy Landau levels, whose signature is reflected in a
4ð2N þ 1Þe2=h Hall conductivity step where N ¼
0; 1; 2; . . . depending on the superlattice potential parame-
ters. This feature of the electronic structure of the 1D
graphene superlattices gives rise to new properties for the
quantum Hall effect. Equally important, these new phe-
nomena may provide a direct way to characterize the
peculiar electronic structure of these systems
experimentally.
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FIG. 3 (color online). Landau level energy Ei (in units of "B �
@v0=lB with lB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@c=eB
p

) versus the Landau level index i (i ¼
0;�1;�2; . . . ) in GSs formed with a 1D Kronig-Penney poten-
tial for several different values of barrier height U0, with lattice
period L ¼ 0:5lB. The LLs now have a finite width �E (shown
not to scale and exaggerated in the figure) arising from the ky
dependence of the energy of the electronic states in a perpen-
dicular magnetic field [38]. Note the 3-fold and the 5-fold
degeneracies around Ei ¼ 0 in (d) and (f), respectively. (If the
spin and valley degeneracies are considered, those become 12-
fold and 20-fold, respectively.)
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FIG. 4 (color online). Hall conductivity �xy versus carrier
density (with an artificial broadening for illustration) for a 1D
Kronig-Penney GS with U0 near 6�@v0=L (solid red line) is
compared to that of pristine graphene (dashed blue line).

PRL 103, 046808 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
24 JULY 2009

046808-3



Note added.—Recently, we became aware of theoretical
work [44] confirming the newly generated massless fermi-
ons reported in this manuscript, with applications to trans-
port properties.
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