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We suggest a theory of field-induced charge-density-wave phases, generated by high magnetic fields in

quasi-low-dimensional conductors. We demonstrate that, in layered quasi-one-dimensional conductors,

the corresponding critical magnetic field ratios are universal and do not depend on any fitting parameter. In

particular, we find that H1=H0 ¼ 0:73, H2=H0 ¼ 0:59, H3=H0 ¼ 0:49, and H4=H0 ¼ 0:42, where Hn is a

critical field of a phase transition between the field-induced charge-density-wave phases with numbers n

and nþ 1. The suggested theory is in very good qualitative and quantitative agreement with the existing

experimental data in �-ðETÞ2KHgðSCNÞ4 material.

DOI: 10.1103/PhysRevLett.103.046401 PACS numbers: 71.45.Lr, 71.10.�w

The high magnetic field properties of organic conductors
and superconductors have been intensively studied [1,2]
since the discovery of the so-called field-induced spin-
density-wave (FISDW) phase diagrams [3,4]. Phase tran-
sitions from the metallic to FISDW phase were success-
fully explained in terms of the 3D ! 2D dimensional
crossovers [1,5–11]. In particular, the metal-FISDW phase
transition line was calculated in Refs. [5–7], whereas a free
energy of the FISDW phases was evaluated for all ranges
of temperatures and magnetic fields in Refs. [8,9]. In
addition, the so-called three-dimensional quantum Hall
effect, experimentally observed in the FISDW phases [1–
4], was theoretically explained in Refs. [10,11].

A related phenomenon—the so-called field-induced
charge-density-wave (FICDW) phase diagram—was an-
ticipated in Refs. [5,12] and recently experimentally dis-
covered in the �-ðETÞ2KHgðSCNÞ4 conductor [13–18].
Although originally the FICDW phases were predicted to
exist due to electron-electron interactions [12], later it was
shown [19] that they naturally appeared in a physical
picture, where only electron-phonon interactions were
taken into account. Note that the phase diagram, suggested
in Ref. [12], depends on many parameters such as details of
electron-electron interactions, temperature, and anisotropy
ratios of a quasi-one-dimensional (Q1D) electron spec-
trum. In addition, according to Ref. [12], the FICDW
phases are always mixed with the FISDW ones. The
above-mentioned circumstances make it almost impossible
to test the theory [12] and to compare it with the existing
experiments [13–18]. In a model [19] based on electron-
phonon interactions, there are no FICDW-FISDW mixing
effects, but the analysis [19] is oversimplified and, as we
stress below, is not in quantitative agreement with the
experimental data.

The main goal of our Letter is to suggest a universal
theory of the FICDW phase diagram, which does not
depend on details of electron-electron and electron-phonon
interactions as well as on temperature and details of a Q1D
electron spectrum. In particular, we suggest a model, based
on electron-phonon interactions, for a general form of a

layered Q1D spectrum. We demonstrate that the critical
magnetic fields ratios H1=H0 ¼ 0:73, H2=H0 ¼ 0:59,
H3=H0 ¼ 0:49, and H4=H0 ¼ 0:42 (where Hn is a critical
field of a phase transition between the FICDW phases with
numbers n and nþ 1) do not depend on any parameter and
calculate them. A comparison of the present theory with
the experiments [14–18] shows not only qualitative but
also quantitative agreement. This justifies the validity of
our approach and indicates, in particular, that the electron-
electron interactions and FICDW-FISDW mixing effects
[12] are not very important.
Let us consider the most general layered Q1D electron

spectrum, linearized near its two Fermi surface (FS) sheets,

��ðpÞ ¼ �vFðpx � pFÞ þ t0yðpyayÞ þ t0zðpzazÞ;
t0yðpyayÞ ¼ 2ty cosðpyay � �Þ;
t0zðpzazÞ ¼ 2tz cosðpzaz � �Þ;

(1)

which obeys the so-called ‘‘nesting’’ condition [1,2],

�ðpþQ0Þþ�ðpÞ¼0;

Q0¼½2pF;ð��2�Þ=ay;ð��2�Þ=az�:
(2)

[Hereþð�Þ stands for the right (left) sheet of Q1D FS (1);
pF and vF are the Fermi momentum and Fermi velocity,
respectively; ty and tz are overlapping integrals between

electron wave functions; pFvF � ty � tz; � and � are

some phase shifts; @ � 1.] It is well known [1,2,5–9,12,19]
that the so-called Peierls instability for ‘‘nested’’ FS (1)
results in the appearance of a density wave ground state.
Below, we consider a CDW ground state in accordance
with the existing experimental data in �-ðETÞ2KHgðSCNÞ4
material [13–18].
If we take into account a small (but finite) nonlinearity in

a Q1D electron spectrum (1) along the conducting chains,
then we obtain the following electron spectrum:

��ðpÞ ¼ �vFðpx � pFÞ þ tyðpyayÞ;
tyðpyayÞ ¼ 2ty cosðpyay � �Þ þ 2t0y cosð2pyay � 2�Þ; (3)
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with small ‘‘antinesting’’ term 2t0y cosð2pyay � 2�Þ, where
t0y � t2y=ðpFvFÞ � ty. [Note that, in Eq. (3), we use a 2D

model electron spectrum, since we suggest that ty � tz.

In this case, the CDW and FICDW phases always
correspond to an ideal nesting vector (2) along the z axis
since the corresponding antinesting term is too small: t0z �
t2z=ðpFvFÞ � t0y.] The antinesting term in Eq. (3) is known

to decrease a stability of the CDW ground state, and,
therefore, at high pressures (i.e., large enough values of
t0y), the metallic phase has to be restored [1,2,5–9].

At first, let us discuss the FICDW phase formation, using
qualitative arguments. For this purpose, we consider a Q1D
electron spectrum (3) in the presence of an external mag-
netic field, applied along the z axis,

H ¼ ð0; 0; HÞ; A ¼ ð0; Hx; 0Þ: (4)

To obtain the electron Hamiltonian in a magnetic field (4)
from the spectrum (3), we use the Peierls substitution
method px ! �iðd=dxÞ, py ! py � ðe=cÞAy, and take

into account the Pauli spin-splitting effects

�
�vF

�
�i

d

dx
� pF

�
þ ty

�
pyay �!c

vF

x

�
��B�H

�

	��
� ðx; py; �Þ ¼ ����

� ðx; py; �Þ; (5)

where � ¼ þ1ð�1Þ for spin up (down), !c ¼ evFHay=c,

and �� ¼ �� �F.
It is important that Eq. (5) can be solved and the corre-

sponding wave functions can be determined analytically:

��
� ðx;py;�Þ¼ expð�ipFxÞexp

�
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�
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�
: (6)

Note that since tyðyÞ ¼ tyðyþ 2�Þ is a periodic function of
y and since

R
2�
0 tyðyÞdy ¼ 0, then the last exponential

function in Eq. (6) has to be a periodic function of x with
a period 2�vF=!c. Therefore, the wave functions (6) can
be rewritten in a form of the Fourier series:

��
� ðx; py; �Þ ¼ expð�ipFxÞ exp

�
�i

��
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�
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�
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AnðpyÞ exp

�
i
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x

�
: (7)

As it directly follows from Eq. (7), 2D electron spectrum
(3) in a magnetic field (4) becomes pure 1D and corre-
sponds to an infinite number of 1D FS, located near px ’
pF and px ’ �pF,

���ðpxÞ ¼ �vFðpx � pFÞ þ n!c ��B�H; (8)

where n is an integer quantum number. Electron spectrum
(8) is shown Fig. 1.
Note that a metallic phase with 1D spectrum (8) is

unstable with respect to the CDW phase formation because
of its 1D nesting properties. Since the FICDW instability
corresponds to a pairing of an electron near pF and a hole
near �pF (and vice versa) with the same spins, then we
expect that possible projections along the x axis of the
FICDW wave vectors are quantized at low enough tem-
peratures (see Fig. 1):

Qn
x ¼ 2pF � 2�BH=vF þ nð!c=vFÞ; �T 
!c; (9)

where the quantization of the electron spectrum (8) is
important. Therefore, at low temperatures, we expect a
competition between the quantized FICDW order parame-
ters (9) and have to choose the order parameter correspond-
ing to the highest transition temperature.
Below, we consider a problem about a formation of the

FICDW phases due to electron-phonon interactions by
means of the Feynman diagram technique [20,21]. In
particular, we consider the FICDW order parameter in
the following form:

�ðx; yÞ ¼ expðiQxxÞ expðiQyyÞ þ c:c:;

Qx ¼ 2pF þ qx; Qy ¼ ð�� 2�Þ=ay þ qy
(10)

(where c.c. stands for a complex conjugated quantity),
which allows us to take into account deviations of the
FICDW nesting vector from its ideal value (2) both along
the x and y axes. In a mean field approximation, a phase
transition temperature between the metallic and FICDW
phases is defined by the so-called electron polarization
operator [20,21]

1

g2
¼ �

Z 2�

0

dðpyayÞ
2�

X
�

T
X
!n

Z þ1

�1
dx1g

���ði!n; x; x1;py

�QyÞg�þþði!n; x1; x;pyÞ exp½iqxðx� x1Þ�; (11)

FIG. 1. A schematic view of the quantized electron spectrum
(8) near px ’ pF and px ’ �pF. There exist an infinite number
of 1D Fermi surfaces, characterized by quantum number n, with
each of them being split due to an electron spin. As a result, at
low enough temperatures, there exists a competition between an
infinite number of nesting vectors, corresponding to Eq. (9).
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where g is an electron-phonon coupling constant and !n is
the Matsubara frequency.

Note that Green functions of electrons near pF and�pF,
g�þþð. . .Þ and g���ð. . .Þ, respectively, can be determined
from the corresponding electron wave functions (6) and
spectrum (8) [21]. After substitution of the Green functions
into Eq. (11) and some calculations, we obtain the follow-
ing equations, which determine the transition temperature
to the FICDW phases (10):

TFICDW ’!c exp

�
� 1

geffðt0yÞgeffðHÞ
�
;

geffðt0yÞ ¼ 1

2 lnðt0y=t�yÞ ;

geffðHÞ ¼MAXn;qyhcos½�ðx;py;qyÞþnx�ix;py
;

�ðx;py;qyÞ ¼�4tyðqyayÞ
!c

sinðx=2ÞcosðpyayÞ

þ 4t0y
!c

sinðxÞcosð2pyayÞ;

(12)

with the quantized x component of the wave vector

qx ¼ �2�BH=vF þ nð!c=vFÞ: (13)

(Here MAXn;qy denotes a maximization procedure over

two components of the FICDW wave vector: the inte-
ger quantum number n and continuous variable qy [see

Eqs. (10) and (13)], whereas h. . .ix;py
stands for an averag-

ing procedure over the variables x and py.) Note that a

metallic phase is supposed to be stable at H ¼ 0, which
means that t0y > t�y in Eq. (12), where t�y is a value of

the parameter t0y, corresponding to a CDW phase transition

at H ¼ 0 and T ¼ 0. The FICDW transition tempera-
ture (12) is calculated with the so-called logarithmic accu-
racy, where we use the following inequalities: T � !c and
t0y � ty.

We point out that Eq. (12) is different in several impor-
tant aspects from the typical results (e.g., Refs. [9,22]) of
the existing theories of the FISDW phases. First of all, we
take into account strong pressure dependence of the
FICDW transition temperatures [i.e., function geffðt0yÞ],
which is not done in Refs. [9,22]. Second, the destructive
spin-splitting effects against the FICDW phases decrease
function geffðt0yÞ by the factor 1=2 in Eq. (12). The third

(most important) difference is that we retain in the phase

�ðx; py; qyÞ in Eq. (12) only terms of the order of t0y and

disregard all terms of the order of ðt0yÞ3=t2y � t0y. The

above-mentioned approximation makes the suggested
theory to be an universal one. Indeed, as directly seen
from Eq. (12), the function geffðHÞ depends only on the
ratio t0y=!c, and, thus, all critical magnetic fields are pro-

portional to a value of the parameter t0y. Therefore, their
ratios are universal and do not depend on any fitting
parameter, in contrast to all previous theories of the
FISDW and FICDW phases (e.g., Refs. [9,12,22]).
Equation (12) and its numerical analysis are the main

results of this Letter. The distinct feature of Eq. (12) is that
the ratios of the FICDWmagnetic critical fields [i.e., phase
transition fields to the FICDW phases with different quan-
tum numbers (13)] do not depend on any parameter.
Numerical calculations of the effective coupling constant
geffðHÞ in Eq. (12) for the value of the parameter t0y ¼
4:5!cðH ¼ 1 TÞ are presented in Fig. 2, where each
FICDW phase is characterized by some quantum number
n in Eq. (13) (see the figure caption). The calculated ratios
H1=H0 ¼ 0:73, H2=H0 ¼ 0:59, H3=H0 ¼ 0:49, and
H4=H0 ¼ 0:42 (where Hn is a critical field of a phase
transition between the FICDW phases with numbers n
and nþ 1) are compared with the experimental data [18]
in Table I. As it follows from the table, there is an excellent
agreement between the calculated values H1=H0 and
H2=H0 and the measured ones. As to the measured ratio
H3=H0 ’ 0:4, it is in satisfactory agreement with the cor-
responding calculated value H3=H0 ¼ 0:49. On the other
hand, we cannot exclude [23] that, in the experiments [18],
in fact, the fourth critical field H4 was measured instead of
the third one H3. This would give an excellent agreement
with the corresponding calculated value H4=H0 ¼ 0:42.

FIG. 2. Numerically calculated effective coupling constant
geffðHÞ, which defines the metal-FICDW phases transition tem-
perature [see Eq. (12)], is shown by a solid line. Phase transitions
between different FICDW phases, characterized by different
quantum numbers n in Eq. (13), are shown by dotted lines.
Phase n ¼ 0 corresponds to H > 8:5 T;phase n ¼ 1—
8:5 T>H > 6:2 T; phase n ¼ 2—6:2 T>H > 5 T; phase
n ¼ 3—5 T>H > 4:15 T; phase n ¼ 4—4:15T>H>3:6T;
phase n ¼ 5—3:6 T>H.

TABLE I. Theoretical and experimental [18] values of the
critical fields ratios for different pressures.

Critical fields H1=H0 H2=H0 H3=H0 H4=H0

Theory 0.73 0.59 0.49 0.42

P ¼ 4 kbar 0.77 0.59 0.40 � � �
P ¼ 3:5 kbar 0.74 0.57 0.37 � � �
P ¼ 3 kbar 0.75 0.56 0.40 � � �
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Another important property of Eq. (12) is that the phase
transition temperature is the same for two wave vectors,
corresponding to signs (þ) and (�) in Eq. (13).

In our opinion, a very good correspondence between
the results of the present theory and the experimental
data [14–18] is a strong argument in favor of our model,
based on electron-phonon interactions. On the other
hand, we point out that the previous simplified model
[19] is not in a quantitative agreement with the existing
experiments. Indeed, we have numerically analyzed
Eq. (11) of Ref. [19] and found that, in the framework of
the simplified model, H1=H0 ¼ 0:55, H2=H0 ¼ 0:38, and
H3=H0 ¼ 0:29, which is in obvious disagreement with
the experimental data [18] (see Table I). Therefore, it is
crucial to maximize the FICDW phase transition tem-
perature (12) over two components of the wave vector
(10), qx and qy, which is not done in Ref. [19]. We note

that the following inequalities: T � !c and t0y � ty, are

used for the derivation of Eqs. (12) and (13). Therefore,
we do not take into account the finite temperature ef-
fects, described in Refs. [24,25] for the case of the
FISDW phases. The next step in our studies will be to
suggest a relative universal theory of the FISDW phase
diagram and to compare its results with the existing ex-
perimental data. This problem will be considered in detail
elsewhere [26].
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