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We describe the direct observation of entropy-driven crystallization in simulations of dense packings of

linear hard-sphere chains. Crystal nuclei form spontaneously in the phase coexistence region indepen-

dently of chain length. Incipient nuclei consistently develop well defined, stack-faulted layered morphol-

ogies with a single stacking direction. These morphologies deviate markedly from those of monomeric

analogs. The ordering transition is driven by the increase in translational entropy: ordered sites exhibit

enhanced mobility as their local free volume becomes more spherical and symmetric.
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Since early times, crystallization [1] has been the sub-
ject of intense research, encompassing experimental,
analytical, and simulation approaches. While continuum
[2] and mean-field [3,4] theories provide an arguably sat-
isfactory description of crystallization, and of the liquid-
solid transition, a microscopic, atomistic understanding of
the structural and dynamical features of the appearance and
growth of crystal nuclei in undercooled liquids requires the
use of advanced simulation methods. A considerable body
of knowledge from simulations about crystal nucleation
and growth has been collected over the last decades, with
the most extensive studies focusing, understandably, on the
simplest models of matter: monatomic fluids of spherical
atoms interacting via soft-core [4,5] or hard-core [6–8]
potentials. Because of the simplicity, it is widely accepted
that qualitative features displayed by the hard-sphere
model are independent of chemical details, and must hence
be of general applicability. This last remark is manifestly
valid for model macromolecular systems as well [9]. The
crystallization of chain molecules is of maximal relevance
for the physics and thermodynamics of synthetic and bio-
logical polymers, wormlike micelles, and microgels.
However, dense, polymer systems present particular chal-
lenges to conventional molecular dynamics (MD) methods
due to the extremely long relaxation times. For this reason,
MD simulations of chain molecules have often considered
crystallization from dilute systems [10], or have resorted to
coarse-graining approaches [11]. In parallel to atomistic
simulations [10,12] and in spite of the simplifications,
coarse-graining has provided invaluable insights into, and
remarkably realistic descriptions of, nucleation, growth,
and reorganization during annealing [11]. Monte Carlo
(MC) techniques, both continuum and lattice [13,14], and
kinetic MC simulations [15] have also been employed to
describe growth and morphogenesis of polymer crystals. It
was only recently that an off-lattice MC scheme was
developed [16] that can efficiently sample dense packings
of hard-sphere chains up to the maximally random jammed
state [17], by a combination of chain-connectivity-altering
algorithms and localized adaptive-bias moves [16].

In this Letter we report on the direct observation of
spontaneous, entropy-driven crystallization in off-lattice
MC simulations of linear freely jointed chains of tangent
hard spheres. The model contains the fundamental physical
mechanism of (strictly) excluded volume but, unlike
chemically detailed representations, does not possess any
rotational nor bending hindrances, except those caused by
the impenetrability of the monomers. In models with rota-
tional hindrance [18], the ‘‘equilibrium’’ crystal typically
contains fully extended chains, and is unattainable in prac-
tice due to the colossal relaxation time necessary to reach
this conformation via thermal agitation [13]. For this rea-
son, results obtained in most studies of crystallization of
long linear molecules are unavoidably influenced by both
steric (excluded volume) and bonded interactions, even in
coarse-grained models. Thus, polymeric, folded-chain
crystals are widely accepted as ‘‘nonequilibrium’’ states
[19]. However, by eliminating torsional and bending con-
tributions to the system Hamiltonian, while retaining ex-
cluded volume, the concept of an ensemble of ‘‘equi-
librium’’ crystal configurations acquires a well defined
statistical-mechanical meaning. Furthermore, by avoiding
the (computationally expedient) limitation of system dilu-
tion, the entropic origins of the crystal nucleation and
growth can be identified and be cleanly separated from
factors originating in chemical particularities. Previous
Green function and density functional theory work by
Sushko and coworkers [20] had shed valuable light on
the effect of chain flexibility, and of the ratio of sphere
diameter to bond length (fusion parameter �), on chain
crystallization. Our contribution explores the limit of tan-
gent, hard spheres (� ¼ 1), and simulation findings for
local packing can serve as input for [20].
Our MC simulations were carried out in the isochoric

semigrand canonical ensemble [16], and generated long
trajectories of uncorrelated system configurations of aver-
age length N ¼ 12 and 24 of 100 and 50 chains, respec-
tively, for a total of 1200 interacting sites. The effect of
polydispersity was investigated by considering two differ-
ent chain length distributions: (i) uniform ones in the
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intervals N 2 ½6; 18� and N 2 ½12; 36� and (ii) a Flory
(most probable) one with a minimum length of N ¼ 6.
Polydispersity in chain lengths was introduced for compu-
tational reasons since a minimum degree of polydispersity
is required for the function of the chain-connectivity alter-
ing moves [16]. All simulations were performed in cubic
cells with periodic boundary conditions. Simulations with
larger cells ensured the absence of system size effects on
the observed degree of crystallinity, the freezing transition,
and the crystal morphology.

The onset and evolution of crystallization was moni-
tored by means of the characteristic crystallographic ele-
ment (CCE) norm [16,21]. The CCE norm is a strictly
monotonic and structure-discriminating measure of order
based on the point symmetry group [22] of the local
environment of a site. The CCE norm has been shown to
sensitively and quantitatively detect changes in local order-
ing, while identifying the emerging ordered structure with
high specificity [21]. In this Letter, the CCE-norms for the
face-centered cubic (fcc) "fcci and hexagonal close packing
(hcp) "

hcp
i point symmetry groups for each site i were

continually computed. Additionally, all sites were tested
for fivefold and higher-order symmetries by computing the
corresponding CCE norm. For a given configuration an
order parameter sX (X is either hcp or fcc) was calculated
from the distributions �ð"XÞ over all sites as sX ¼R
"thres

0 �ð"XÞd"X, where norms below the threshold value

"thres ¼ 0:245 correspond to a well ordered local environ-
ment [16,21]. The degree of crystallinity �c is calculated as
the sum of the norms (�c ¼ shcp þ sfcc).

In the absence of any external influence, hard-sphere
chain systems were observed to systematically and sponta-
neously develop crystalline nuclei in the range ’ 2
½0:58; 0:61�. Our observation of spontaneous crystalliza-
tion also parallels the finding by Rintoul and Torquato [7]
that, given sufficient time, monomeric hard spheres will

crystallize at all packing densities above the melting point.
Figure 1 shows the spontaneous evolution of crystallinity,
for systems of different average chain lengths (N ¼ 12 and
24) and chain length distributions (Flory and uniform) and
at various packing densities. The results of Fig. 1 demon-
strate that, at a given volume fraction, statistically inde-
pendent MC trajectories converge to very similar degrees
of crystallinity, for both the Flory and uniform distribu-
tions, and for different chain lengths. Crystallization is thus
a robust phenomenon and virtually insensitive to chain
length and polydispersity. Furthermore, crystallinity is ob-
served to increase with increasing packing density. At the
highest volume fraction (’ ¼ 0:61), four out of five sites
(�c ’ 0:83) possess a highly ordered, nearly perfect crys-
talline environment. By far the most salient feature of the
ordered structures [Fig. 2(b)] is the presence of a randomly
stack-faulted, layered morphology with a single stacking
direction. Thus, the incipient nucleus consists of parallel,
two-dimensional–compact layers of either hcp or fcc char-
acter in random alternation. It is remarkable how, starting
from disordered, liquidlike configurations [Fig. 2(a)], the
MC algorithm is able to generate nuclei of incipient crys-
tallization for chain molecules while fully respecting their
connectivity, and correctly sampling from the statistical-
mechanical ensemble. The structure of the incipient crys-
talline nuclei of chains of hard spheres can thus be under-
stood as crystals of monomeric hard spheres on which self-
avoiding random walks have superimposed. This result is,
with the benefit of hindsight, quite plausible. Much less
obvious, and up to the present work unknown, is the deter-
mination of the arrangement of chains in the crystal so that
they remain random walks, and yet are able to entirely
cover the highly regular structure of the crystal of mono-

FIG. 1 (color online). Evolution of degree of crystallinity �c
with MC steps for systems characterized by uniform (for average
chain lengths N ¼ 12 and 24) and most probable chain length
distributions at various packing densities ’.

FIG. 2 (color online). System configurations (’ ¼ 0:61), at
(a) early stage of simulation (amorphous packing) and (b) late
stage where the majority of sites possess a highly ordered local
environment (�c ’ 0:83). Grey and black spheres correspond to
sites with hcp-like and fcc-like local order, respectively. Sites
with high CCE norms are shown as parts of a mesh cloud. (c) and
(d) Same as in (a) and (b) but all sites colored according to the
parent chain. Image created with VMD software [31].
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meric hard spheres. As seen in Fig. 2(d) chains typically
extend across several layers and adopt irregular conforma-
tions. Although a detailed description of the structure is
outside the scope of this Letter, structural and configura-
tional analyses of the resulting nuclei unambiguously iden-
tify the entropic mechanism of the disorder-order tran-
sition. On the one hand, chain conformational entropy
decreases upon crystallization: the accessible conforma-
tional states are reduced, as evidenced by peak narrowing
in the bending and torsional angle distributions (not
shown). Orientational entropy also undergoes a small de-
crease due to loss of isotropy in the distribution of the chain
end-to-end vector (not shown). However, these two entropy
losses are compensated for by a larger increase in transla-
tional entropy. To understand better the driving mechanism
we have studied the rearrangement of local (free) volume
around each site through the transition. We have deter-
mined the local density of each site as the reciprocal of the
volume of the corresponding Voronoi polyhedron. By con-
struction, since the Voronoi cells completely fill the vol-
ume of the simulation box, the average local density re-
mains constant over the MC trajectory. We further find that
the second moment of the distribution of local density
remains practically unaltered during the simulation. How-
ever, a significant change occurs in the shape of the
Voronoi polyhedra as the system transits towards the or-
dered state. We quantify the shape through two principal
measures: asphericity b and relative shape anisotropy k2,
which can be readily calculated from the eigenvalues I1, I2,
and I3 of the moment of inertia tensor of the Voronoi cell
[23]. The lower the value of b the closer the resemblance of
the shape to sphere. The higher the value of k2 the higher
the anisotropy of the shape. We observe that both measures
decrease significantly through the transition so that the
local environment around each chain site becomes more
spherical and more symmetrical. Figure 3 presents the
evolution of b along with �c as a function of MC steps. It
is evident that especially in the transition regime the de-
crease of b towards sphericity is very sharp. It is thus es-
tablished that the local environment undergoes drastic
shape rearrangement. To elucidate how this shifting to-
wards symmetry and sphericity increases the mobility of
chain monomers, we have quantified their ability to
‘‘jiggle’’ (rattle) around by employing the concept of
‘‘flippers’’ as we have done in the past to calculate prox-
imity to the maximally random jammed state for chain
assemblies [16]. Here, a chain monomer is considered as a
‘‘flipper’’ if it is able to perform flip moves of amplitude
d� clockwise or counterclockwise with respect to the
rotation axis defined by its nearest bonded neighbors with-
out resulting in overlaps with any other sphere in the syst-
em. We find that, independently of the flip amplitude d�,
in all cases the fraction of flippers increases significantly
through the ordering transition. This is vividly shown in
Fig. 3 where the fraction of flippers (d� ¼ 1�) is plotted
along �c and b versus MC steps. The strong correlation
between all three quantities is very pronounced. Further-

more, we find that the distribution of the amplitude of the
maximum allowed flip (d�max) for each hard sphere is
shifted to much higher values in the ordered phase com-
pared to the amorphous. It is thus clear that the in-
crease in translational entropy is a consequence of an in-
crease in the accessible volume around each monomer, as
the free volume around it changes significantly in shape
through the transition. This finding for model chain mole-
cules is in perfect qualitative agreement with the seminal
work of Onsager for rodlike colloidal particles [24] and the
more recent studies by Frenkel and collaborators of
entropy-driven phase transitions [25]. Interestingly, in the
case of chain molecules the existence of bonds frustrates,
but does not stop, the redistribution of free volume. How-
ever, we should note that because of the frustration caused
by the divergence in the gap lengths of the nearest neigh-
bors from the reference site (two neighbors should be tan-
gent as a result of chain connectivity but the rest in prin-
cipal are further apart), the local environment around each
site is well ("i � "thres) but not perfectly ("i ! 0) ordered.
The resulting crystal is thus the thermodynamically fa-

vorable phase. This process parallels crystallization in
monomeric athermal systems [7,8,26], but with enriched
configurational freedom. The observed spontaneous emer-
gence of the crystal nuclei is, to the best of our knowledge,
the first direct observation of a purely entropy-driven phase
transition in off-lattice, dense macromolecular systems. It
sheds light on a long standing controversy regarding the
structure of crystals in athermal chains: layers are found to
stack unidirectionally in all cases. A CCE-based analysis
of the nuclei shows that hcp and fcc appear with equal
probability (within statistical uncertainty). Determining
any entropic advantage of fcc versus hcp, assuming such
an advantage exists in chain systems, needs specialized
techniques [27] and cannot be resolved by the present MC
method, nor is it the goal of the present study. Very re-
markably, no traces of twins or multiply twinned nuclei

FIG. 3 (color online). Evolution of degree of crystallinity �c,
average asphericity of the Voronoi polyhedra b, and fraction of
flippers vflip of amplitude d� ¼ 1� as a function of MC steps

(N ¼ 12, ’ ¼ 0:61).
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were identified, nor could any vestige of decahedral or
twisted icosahedral symmetry be detected. The explicit
search for fivefold rotation axes was also unsuccessful in
all cases. This complete absence of sites with fivefold
symmetry is a major departure with respect to the mor-
phologies observed in experiments and in MD calculations
of monomeric hard spheres, where multitwinned structures
with pentagonal symmetry appear copiously [8]. We sur-
mise that two independent factors are responsible: MD-
based crystallization dynamics are widely recognized to
more closely adhere to Ostwald’s rule of stages [2(a),28],
in which metastable intermediate phases may hinder the
evolution of the thermodynamically stable phase [29].
However, a second, equilibrium factor, more substantial
than the previous kinetic argument, is responsible for the
absence of twins and of extended chains in crystalline
nuclei of athermal polymers: unlike monoatomic hard
spheres, athermal chains crystallize while simultaneously
respecting chain connectivity. Highly irregular, compact
chain conformations are favored entropically: there are
many more ways to build a crystal using coiled, compact
chain conformations than using extended ones. These con-
formations are also observed to favor specific bending and
torsion angles, which stem from an underlying, loosely
polytetrahedral structure [23] and are essentially incom-
patible with any point symmetry group that includes one
fivefold rotation axis. Hence, the observed statistical
weight of configurations containing fivefold axes is negli-
gible. Any method able to generate truly equilibrated
structures will consequently produce a minuscule, in prac-
tice unobservable, fraction of entropically penalized mor-
phologies. In this respect, chain-molecule nuclei differ
greatly from monomeric-sphere nuclei: the latter are free
from connectivity constraints, and can incorporate a few
sites of fivefold symmetry in incipient nuclei with a small
entropic penalty, so that they readily appear in experiments
and in MD simulations [8]. On the other side our MC study
strongly supports the view that in a perfect crystal of hard-
sphere chains, the positions of the sphere centers
correspond to those of the monomeric-sphere crystal, but
there is an entire distribution of microstates (chain con-
formations) that can be ‘‘overlaid’’ on the fixed coordinates
of the sphere centers. These numerous microstates make
the classical ground state of the crystal of hard-sphere
chains highly degenerate [30].
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