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We investigate the lattice Coulomb glass model in three dimensions via Monte Carlo simulations. No
evidence for an equilibrium glass phase is found down to very low temperatures, although the correlation
length increases rapidly near T = 0. A charge-ordered phase exists at low disorder. The transition to this
phase is consistent with the random field Ising universality class, which shows that the interaction is
effectively screened at moderate temperature. For large disorder, the single-particle density of states near
the Coulomb gap satisfies the scaling relation g(e, T) = T° f(|e|/T) with & = 2.01 + 0.05 in agreement
with the prediction of Efros and Shklovskii. For decreasing disorder, a crossover to a larger effective

exponent occurs due to the proximity of the charge-ordered phase.

DOI: 10.1103/PhysRevLett.103.045702

In disordered insulators, the localized electrons cannot
screen effectively the Coulomb interaction at low tempera-
ture. Therefore, many-electron correlations are important
in this regime. The long-range repulsion induces a soft
“Coulomb gap” in the single-particle density of states
(DOS). Efros and Shklovskii (ES) [1] argued that the gap
has a universal form g(e) = |e — w|® near the chemical
potential u, with 6 = d — 1 in d dimensions, and that a
saturated bound 6 = d — 1 modifies the variable-range
hopping resistivity InR ~ 77" from Mott’s law x =
1/(d + 1) to x = 1/2. Both the existence of the gap and
the crossover to x =~ 1/2 at low temperature T have been
confirmed experimentally and in numerical simulations
[2], but the validity of 6 = 2 for d = 3 has yet to be firmly
established. Pseudo-ground-state numerical calculations
gave 6 = 2.38 [3], 6 = 2.7 [4-6], and 6 = 2.01 [7], while
finite-7' simulations obtain 6 between 2 and 4.8 [3,5,6]
from the filling of the gap as g(u) « T [8-10].

It was also suggested long ago [11] that disordered
insulators enter a glass state at low temperature. Ample
experimental and numerical evidence of glassy nonequi-
librium effects in these systems has been obtained since
[12]. However, it remains unclear whether these effects are
purely dynamical or reflect an underlying transition to an
equilibrium glass phase (GP) and whether there is a link
between glassiness and the Coulomb gap. Some evidence
for a sharp equilibrium transition to a GP was found in
simulations of localized charges with random positions
[6,14,15] but not in the presence of on-site disorder
[7,15]. In the latter case, the transition would not break
any symmetry of the Hamiltonian, similarly to the long-
debated Almeida-Thouless transition in spin glasses [16].
These issues have been brought again to the fore by recent
mean-field studies [13,17-19] which predict a “replica
symmetry broken” equilibrium GP below a critical tem-
perature 7', in the presence of on-site disorder. In this GP,
correlations remain critical, which leadsto 6 = d — 1, and
both T, and the gap width A scale as W~'/2 for d = 3 and
large disorder strength W [13].
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In this Letter, we investigate these predictions via ex-
tensive Monte Carlo (MC) simulations of the Coulomb
glass lattice model with on-site disorder [20]. In addition,
we study in detail the transition from the fluid to the
charge-ordered phase (COP). For W = 0, there is good
numerical evidence for an Ising-like transition [21]. For
W # 0, mean-field theory predicts a stable COP for d = 3
[18,22]. Beyond mean field there is some numerical evi-
dence that the COP survives small positional disorder [6,7]
and on-site disorder [23], but neither the phase diagram
nor the critical properties have been investigated. Our
results are as follows: (i) A COP exists below the (approxi-
mate) phase boundary in Fig. 1. (ii) The fluid-COP tran-
sition is consistent with the random field Ising model
(RFIM) universality class, which shows that the interaction
is effectively screened near the transition. (iii) No GP is
found for 7' well below the mean-field T, [18], in agree-
ment with the results of Ref. [7] but at lower T and in a
wider range for W. (iv) Because of the long-range interac-
tion, the glass correlation length increases rapidly and
possibly diverges as T — 0. (v) For large W, the DOS
scales as g(e, T) = T°f(|e|/T) near the gap, with a satu-
rated exponent 6 =2.00. (vi) As W decreases, scaling

FIG. 1 (color online). Phase diagram of the Coulomb glass
model. The thin lines are the simulation paths [BC: T =
(3/10)W + 7/100, W = 0.977; DE: T = (9/80)W + 3/200,
Wi = 0.506; T, = 0.275]. The fluid-COP boundary interpolates
the transition temperatures estimated along AB, BC, and DE,
shown in red. Our results indicate that no glass phase exists
above the blue dashed line. See also Fig. 2 of Ref. [18].
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breaks down above the COP, and an effective power law

g.(e, T =0) « |€|® holds with § =3, in contrast with

Ref. [7]. A more extended account will appear later [24].
Model and simulation.—We study the Hamiltonian

2
H =S =K, = K+ WS e, (1)
2K |1 i
where n; € {0, 1} are the occupation numbers for the N =
L sites of a hypercubic lattice (d = 3) with YN | n; = KN
and r;; is the distance from i to j. The filling factor is K =
1/2 (which gives u = 0). The random on-site energies ¢;
are independent and Gaussian-distributed with zero mean
and variance unity. Energies and temperatures will be in
units of e?/(k€) and lengths in units of the lattice spac-
ing €.

We carry out canonical MC sampling along the paths
ABC and ADE in Fig. 1 and at constant W =
0.2,0.5, 1,2, 4. We consider an infinite sphere of periodic
images of a central L? cell and sum over all interactions
with the Ewald method with a dipole surface term [25]. To
reach low temperatures, we use the exchange MC algo-
rithm [26]. For each realization (sample) ¢ = {¢;} |, we
simulate identical replicas with different (7, W) along the
simulation path. Every N/2 Metropolis steps for single-
electron hops, replicas at adjacent (T, W) and (77, W') swap
their configurations with probability min(1, p), where p =
exp[(B—BNIH — H")+ (W =W)(BR' - BR)], B=
1/T, and R = ¥ ;n;¢;, which preserves detailed balance.
The simulation time z, is chosen so that averages over the
intervals [#,/3, t,] and [#,/9, t,/3] agree within the statis-
tical errors and that the identity 27N '[(R)],, =
WQOeN™! zgil[<n§“>n§”>>]av — 1), valid for Gaussian disor-
der, is satisfied. Here (-) and [-],, are the thermal and
sample averages, respectively, and a and b are two inde-
pendently simulated replicas with the same (¢, T, W) [27].

Charge ordering.—Figure 2 (top inset) shows the
COP order parameter M, = [{|m,])],, along the paths
AB, BC, and DE, where m;=N"'Y¥Y o, and o, =
S;(—1)*vi*s (we introduce the Ising variables S; =
2n; — 1). The sharp increase demonstrates a transition to
a COP. To determine the transition temperature 7., we
measure the finite-size correlation length (CL) [28]

1 x.(0) )1/2
= — -1 , 2
fL 2 Sln(lkminl/z) (XL(kmin) ( )
where XL(k) = Nﬁ]Zi,j[<0-i0-j>]aveiklr"j and kmin =

(27r/L, 0,0). Along BC, the data for &, (T)/L for different
L cross (Fig. 2, main panel), which signals [29] a transition
at TB¢ = 0.0950(15). We observe similar crossings along
AB and DE (not shown) at TA% = 0.1280(15), in excellent
agreement with Refs. [6,21], and TPF = 0.031(2). The
curve [T.(W)/TAB]-90 =1 — (W/0.15)"%° interpolates
these three points and gives the approximate fluid-COP
phase boundary in Fig. 1.

Critical behavior—Since at W = 0 the fluid-COP tran-
sition has a positive specific-heat exponent [21], disorder is
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FIG. 2 (color online). Charge-order CL along path BC in
Fig. 1. Top inset: Order parameter M, along paths AB, BC,
and DE. Bottom inset: Specific heat along path BC.

relevant and the W # 0 transition will be governed by a
random fixed point which, by analogy with the RFIM [21],
we expect to be at 7 = 0 [30]. Assuming that the W # 0
transition is second order (indeed, the distribution of m is
unimodal at all T for a predominant, and increasing with L,
fraction of the samples [24]), we obtain the critical expo-
nents in Table I. B/v and ¥/v were estimated with the
quotient method [32] for the observables M, and y; =
N[(m?)],,, respectively [the quotient estimates from
(L, L") = (6, 8), (6, 10), and (8, 10) agree within the errors],
while y/» was obtained by fitting aL?/” to the height of
the peak of the susceptibility N[{m,%) — {|m,])*],, (data
not shown). The peak height for the specific heat ¢; =
1/(NTH)[{(H?)y — (H)?],, increases slowly with L (Fig. 2,
bottom inset), which suggests either & < 0 or a logarithmic
divergence (a = 0). We could not directly estimate » in a
reliable way, but we obtain ¥ = 1.11(12) from the modi-
fied hyperscaling relation [30] (d — 6)v = 2 — «, assum-
ing « =0 and using 0 = y/v — y/v = 1.20(20). As
shown in Table I, the exponents agree fairly well with the
known values for the RFIM [31], which suggests that the
interaction is effectively short-range near the phase
boundary.

Glass phase.—Several works have searched for a GP by
measuring the parameter [({(n,) — 1/2)*],, [11] or higher
cumulants of the overlap between two replicas [15]. We
measure instead the glass CL £9 obtained from Eq. (2) by
replacing [(o;0;)],, with the ‘“spin-glass” correlation
function G(r;;) = [((S;S;) — (S:XS;)?*]y. In the fluid

TABLE I. Critical exponents for the fluid-COP transition
along BC in Fig. 1, compared with the RFIM values [31].
y/v y/v B/v v

1.69(17)  2.89(9)  0.06(4)  1.11(12)
1.44(12)  2.93(11) 0.011(4)  1.37(9)

Coulomb glass
RFIM
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phase we have G(r) ~exp(—r/&°) for &6 <r< L,
where £9 is the bulk CL, and thus £ ~ £9 for L > &°
and £¢ ~ L for L < £°. In a “many-state” GP [13], G(r)
tends to a constant for large r, and thus we have &9 ~
L%2*1 Hence the existence of a GP will be signaled by the
crossing of ¢7(T)/L for different L near T = T, [29].

As shown in Fig. 3(a) for W = 0.5, 1, we observe no
crossing down to the lowest equilibrated temperature and
well below the mean-field glass transition (7, = 0.037 for
W = 0.5 [18]). Similar results were found in Ref. [7] for
T = 0.03 and W = 0.4. We also exclude that a GP occurs
at T, > T, along BC and DE by comparing the crossing
temperatures for £¥ /L (not shown) and £&; /L: For all pairs
(L, L"), they differ by less than 1%. Together with the
results at constant W, this indicates that no GP exists above
the dashed line in Fig. 1.

Figure 3(b) shows that £¥ is nearly independent of L at
large T and W = 1 apart from small finite-size effects, and
thus &9, is a good estimate of £ for T = 0.017. At
lower T we observe £ ~ L, which shows that £9 becomes
larger than = 10 and possibly diverges as 7' — 0. Indeed,
£9_1(T) can be fitted for T € [0.017,0.113] by a power
law 77" with v/ = 0.82 [Fig. 3(b)], which also gives a sat-
isfactory finite-size scaling £€¢ = Lf(TL'"") [Fig. 3(c)]. A
divergence would be a nontrivial prediction, since for W #
0 the ground state of a periodic sample is unique. Because
L and ff are rather small, however, we can rule out neither
that £Y stays finite at 7 = 0 nor an exponent ¢’ = 1. An
interesting question is whether there is a link with the 7!
divergence of the screening length found in mean-field
theory [13] and from simple arguments [10,33]. We tested
that the CL obtained by replacing [(o;0;)],, with

g/L
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FIG. 3 (color online). (a) Glass correlation length ff atWw =1
and W = 0.5 (shifted upwards by a factor of 7). The absence of
crossing is evidence against the existence of an equilibrium glass
transition. (b) Power-law fit of flco =T for W=1.
(c) Scaling plot &9 = Lf(TL'") for W =1 and W = 0.5
(shifted to the right by a factor of 5).

[{o;0;) — (o:X0 )],y in Eq. (2) remains smaller than unity
at all 7, which suggests that the correlated regions are
disordered. Finally, we simulated the short-range RFIM,
choosing W so that the value of N~ '[(3;n;¢;)],, is close to
the Coulomb glass value at W = 1, and found £¥ <1 as
T — 0, which suggests that the large CL is due to the long-
range interaction.

Coulomb gap.—The single-particle DOS is defined as
(e, T) = NI[(ZN, 8(e — €y, Where € = We,+
Y. +i(n; — K)/r;; is the cost of adding an electron at site
i of the central cell while leaving the periodic images
unchanged. We compute the infinite sum with the Ewald
method. Because of the dipole term [25], the DOS has no
hard gap [24,34], unlike for a finite, nonperiodic system.
The finite-size effects due to the energy scale L™! turn out
to be significant for |€| = aL ™! with a =~ 0.3, while those
due to the sample fluctuations of u (of order W/ L92) were
drastically reduced by shifting the DOS before averag-
ing over the samples [35]. In the gap region (|e|, T) <
A, which is our only focus here, one expects the scal-
ing g,(eT)=T°f(lel/T) for aL ' < (le|, T), with
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FIG. 4 (color online). (a)-(c) Scaling plots of the DOS for
W =4,2,05 and L = 10. From bottom to top: 7 = 0.047,
0.035, 0.025, 0.017, and 0.0105 plus 7 = 0.0049 for W = 4,2
and 7 = 0.0026 for W = 4. The error is the standard deviation
of the sample fluctuations. The solid lines represent the ES law
g(€, T) = 3€% /. The dashed line with slope 2.8 in (c) highlights
the departure from the ES law at low W (the W =0.5, T =
0.0105 data are not fully equilibrated, but the slope increases
with simulation time). Inset of (b): Finite-size scaling for W = 4
and T = 0.0077 (other values of W and T give similar plots).
(d) Temperature dependence of the DOS at |e| = 0.0075 for L =
10.
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f(x) ~ constant as x — 0 and f(x) ~ cx® as x — oo. Fig-

ures 4(a)-4(c) show scaling plots with 6 = 2 for L = 10
and W = 4,2,0.5. For W = 4, scaling is excellent even for
this moderate size, with small deviations for |e| < 0.03
due to finite-size effects. For A/T > |e|/T = 6, the data
are well fitted by g,0(€, T) = c|e|® with ¢ = 1.1, which is
close to the self-consistent prediction ¢ = 3/ [20] (while
Ref. [13] finds ¢ = 0.2083). As shown in Fig. 4(b) (inset),
the finite-size scaling ansatz g, (€, T) = L~ ?h(eL), which
should hold for T < |e| < aL™' < A [with h(x) ~ c|x|®
for large x], is also well satisfied with ¢ = 3/, § = 2. Our
final estimate is 6 = 2.01 = 0.05, which provides strong
support for a saturated ES bound.

For decreasing W, we observe increasingly stronger
deviations from the & = 2 scaling. A fit g,o(e, T) = c|el?
atlow T gives an effective exponent 6 = 2.3 for W = 2 and
6 = 2.8 for W= 0.5 [Fig. 4(c)]. We interpret this as a
crossover due to the vicinity of the fluid-COP boundary,
below which the DOS has a hard gap at T = 0. The cross-
over is apparent in Fig. 4(d): Since g, (e = 0,T)/T? «
T°2 for alL™' = T < A, the plateau for W = 4 supports
6 = 2, while for decreasing W the exponent increases to
6 > 3. The L dependence is consistent with the scaling
g, (€ =0,T) =T°h(TL) (not shown) with & extracted
from Fig. 4(d) for each value of W. Our results differ
markedly from Ref. [7], which reports & = 1.83(3) for
the same model at W = 0.4, T = 0 [however, g;(e =0)
is much larger than our data and increases with L]. A
similar crossover in the DOS was reported for d = 2,
where the COP occurs at W = 0 [36].

In conclusion, we presented evidence that no equilib-
rium glass phase exists in the Coulomb glass, but a satu-
rated ES bound holds. The long-range part of the
interaction appears to be irrelevant as to the equilibrium
thermodynamics, except for a possible diverging correla-
tion length at 7 = 0, which calls for further investigation.
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