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We consider several classes of symmetries of the Dirac Hamiltonian in 3þ 1 dimensions, with axially

deformed scalar and vector potentials. The symmetries include the known pseudospin and spin limits and

additional symmetries which occur when the potentials depend on different variables. Supersymmetries

are observed within each class and the corresponding charges are identified.
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The Dirac equation plays a key role in microscopic
descriptions of many-fermion systems, employing cova-
riant density functional theory and the relativistic mean-
field approach. The relevant mean-field potentials are of
Coulomb vector type in atoms, and a mixture of Lorentz
vector and scalar potentials in nuclei and hadrons [1].
Recently, symmetries of Dirac Hamiltonians with such
mixed Lorentz structure have been shown to be relevant
for explaining the observed degeneracies of certain shell-
model orbitals in nuclei (‘‘pseudospin doublets’’) [2], and
the absence of quark spin-orbit splitting (‘‘spin doublets’’)
[3], as observed in heavy-light quark mesons. Super-
symmetric patterns have been identified in specific limits
of such spherical potentials [4,5]. In the present Letter we
further explore classes of symmetries and supersymmetries
when these potentials are axially deformed. Such a study is
significant in view of the fact that mean-field Hamiltonians
often break the rotational symmetry. Cylindrical geome-
tries are relevant to a number of problems, including
electron channeling in crystals, structure of axially de-
formed nuclei, and quark confinement in spheroidal
flux tubes.

The Dirac Hamiltonian, H, for a fermion of mass M
moving in external scalar, VS, and vector, VV , potentials is

given by H ¼ �̂ � p̂þ �̂ðMþ VSÞ þ VV [6]. When the
potentials are axially symmetric, i.e., independent of the

azimuthal angle �, VS;V ¼ VS;Vð�; zÞ, � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, then

the z component of the angular momentum operator, Ĵz,
commutes with H and its half-integer eigenvalues � are

used to label the Dirac wave functions � ¼
ðgþe�i�=2; g�ei�=2; ifþe�i�=2; if�ei�=2Þei��. Here g� �
g�ð�; zÞ and f� � f�ð�; zÞ are the radial wave functions
of the upper and lower components, respectively.
Henceforth, such a wave function will be denoted by
��: fgþ; g�; fþ; f�g. The potentials enter the Dirac equa-
tion through the combinations

Að�; zÞ ¼ EþMþ VSð�; zÞ � VVð�; zÞ; (1a)

Bð�; zÞ ¼ E�M� VSð�; zÞ � VVð�; zÞ: (1b)

For each solution with �> 0, there is a degenerate time-
reversed solution with ��< 0, hence, we confine the

discussion to solutions with �> 0. Of particular interest
are bound Dirac states with jEj<M and normalizable
wave functions in potentials satisfying �VSð�; zÞ,
�VVð�; zÞ ! 0 for � ! 0 and VSð�; zÞ, VVð�; zÞ ! 0 for
� ! 1 or z ! �1. The boundary conditions imply that
the radial wave functions fall off exponentially for large
distances and behave as a power law for � ! 0.
Furthermore, for z ¼ 0 and �!1, f�=gþ/ðM�EÞ>0
and g�=fþ / ðMþ EÞ> 0, while for z ¼ 0 and � ! 0,
f�=gþ / Bð0Þ� and g�=fþ / �Að0Þ�. These properties
have important implications for the structure of radial
nodes. In particular, it follows that for potentials with the
indicated asymptotic behavior and Að0Þ, Bð0Þ> 0 as en-
countered in nuclei, a necessary condition for a nodeless
bound eigenstate of a Dirac Hamiltonian is

g� ¼ 0 or fþ ¼ 0: (2)

The Dirac equation, H� ¼ E�, leads to a set of four
coupled partial differential equations involving the radial
wave functions. Their solutions are greatly simplified in
the presence of symmetries. We now discuss four classes of
relativistic symmetries and possible supersymmetries
within each class.
The symmetry of class I, referred to as pseudospin

symmetry, occurs when the sum of the scalar and vector
potentials is a constant, VSð�; zÞ þ VVð�; zÞ ¼ �0. The

symmetry generators, ~̂Si, commute with the Dirac
Hamiltonian and span an SU(2) algebra [7,8]

~̂S i ¼ UpŝiUp 0
0 ŝi

� �
i¼ x; y; z Up ¼ � �p

p
: (3)

Here ŝi ¼ �i=2 are the usual spin operators, defined in
terms of Pauli matrices. The Dirac eigenfunctions in the
pseudospin limit satisfy

~̂S z�
ð ~�Þ
� ¼ ~��ð ~�Þ

� ; ~� ¼ �1=2; (4)

and form degenerate SU(2) doublets. Their wave functions
have been shown to be of the form [9]

�ð�1=2Þ
�1¼~��1=2

: fgþ;�g; 0; fg; (5a)

�ð1=2Þ
�2¼~�þ1=2

: fg; g�; f; 0g; (5b)
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where ~� ¼ �� ~� � 0 is the eigenvalue of Ĵz � ~̂Sz. The
relativistic pseudospin symmetry has been tested in nu-
merous realistic mean-field calculations of nuclei and
were found to be obeyed to a good approximation, espe-
cially for doublets near the Fermi surface [9,10]. The
dominant upper components of the states in Eq. (5), in-
volving gþ and g�, correspond to nonrelativistic pseudo-
spin doublets with asymptotic (Nilsson) quantum numbers
½N; n3;��� ¼ �þ 1=2 and ½N; n3;�þ 2�� ¼ �þ 3=2,
respectively. The doublet is expressed in terms of the

pseudo-orbital angular momentum projection, ~� ¼ �þ
1, which is added to the pseudospin projection, ~� ¼ �1=2,

to form doublet states with � ¼ ~�� 1=2. Such doublets
play a crucial role in explaining features of deformed
nuclei, including superdeformation and identical bands
[9,11].

The symmetry of class II, referred to as spin symmetry,
occurs when the difference of the scalar and vector poten-
tials is a constant, VSð�; zÞ � VVð�; zÞ ¼ �0. The symme-
try group is again SU(2) and its generators [7]

Ŝ i ¼ ŝi 0
0 UpŝiUp

� �
; i ¼ x; y; z; (6)

commute with the Dirac Hamiltonian. The Dirac eigen-
functions in the spin limit satisfy

Ŝ z�
ð�Þ
� ¼ ��

ð�Þ
� ; � ¼ �1=2; (7)

and form degenerate SU(2) doublets. Their wave functions
are of the form [9]

�ð1=2Þ
�1¼�þ1=2: fg; 0; f; f�g; (8a)

�ð�1=2Þ
�2¼��1=2: f0; g; fþ;�fg; (8b)

where � ¼ ��� � 0 is the eigenvalue of Ĵz � Ŝz. The
upper components of the two states in Eq. (8) form the
usual nonrelativistic spin doublet with a common radial
wave function, g, an orbital angular momentum projection,
�, and two spin orientations � ¼ �� 1=2. The relativis-
tic spin symmetry has been shown to be relevant to the
structure of heavy-light quark mesons [3].

The Dirac Hamiltonian has additional symmetries when
the scalar and vector potentials depend on different varia-
bles. The symmetry of class III occurs when the potentials
are of the form VS ¼ VSðzÞ and VV ¼ VVð�Þ. In this case,
the Dirac Hamiltonian commutes with the following
Hermitian operator:

R̂ z ¼ ½Mþ VSðzÞ��̂�̂3 þ �5p̂z; (9)

where �̂i ¼ ð�i
0

0
�i
Þ. The Dirac eigenfunctions satisfy

R̂ z�
ð�Þ
� ¼ ��ð�Þ

� : (10)

A separation of variables is possible by choosing the Dirac
wave function in the form

�ð�Þ
� : fu1hþ; u2h�; u1h�;�u2hþg= ffiffiffiffi

�
p

; (11)

where ui � uið�Þ, h� � h�ðzÞ and, for simplicity, we have
omitted the label � from these wave functions. The Dirac
equation then reduces to a set of two coupled first-order
ordinary differential equations in the variable �,

½d=d���=��u1ð�Þ� ½E�VVð�Þþ ��u2ð�Þ ¼ 0; (12a)

½d=d�þ�=��u2ð�Þþ ½E�VVð�Þ� ��u1ð�Þ ¼ 0; (12b)

and a separate set in the variable z

½Mþ VSðzÞ þ d=dz�h2ðzÞ ¼ �h1ðzÞ; (13a)

½Mþ VSðzÞ � d=dz�h1ðzÞ ¼ �h2ðzÞ; (13b)

where h�ðzÞ ¼ h2ðzÞ � h1ðzÞ. The separation constant, �,
plays the role of a mass for the transverse motion and is
determined from imposed boundary conditions. A special
case within the symmetry class III, with VSðzÞ ¼ 0 and � ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p2

z

q
, was considered for electron channeling in

crystals [12]. For VSðzÞ ¼ 0, R̂z of Eq. (9), reduces to the
transverse polarization operator relevant to studies of
synchrotron radiation in storage rings and QED processes
in magnetic flux tubes (e.g., eþe� production and
Bremsstrahlung) [13].
The symmetry of class IVoccurs when the potentials are

of the form VS ¼ VSð�Þ and VV ¼ VVðzÞ. In this case, the
following Hermitian operator

R̂ � ¼ ½Mþ VSð�Þ��̂3 � i�̂�5ð�̂� p̂Þ3 (14)

commutes with the Dirac Hamiltonian and the Dirac ei-
genfunctions satisfy

R̂ ��
ð~�Þ
� ¼ ~��ð~�Þ

� : (15)

Again, a separation of variables is possible with the choice
of wave function,

�ð~�Þ
� : f�1wþ;�i�2w�; i�1w�;��2wþg= ffiffiffiffi

�
p

; (16)

where �i � �ið�Þ and w� � w�ðzÞ. The Dirac equation
then reduces to a set of ordinary differential equations in
the variable �,

½d=d���=���1ð�Þ� ½~�þMþVSð�Þ��2ð�Þ ¼ 0; (17a)

½d=d�þ�=���2ð�Þþ ½~��M�VSð�Þ��1ð�Þ ¼ 0; (17b)

and a separate set in the variable z

½E� VVðzÞ � id=dz�w2ðzÞ ¼ ~�w1ðzÞ; (18a)

½E� VVðzÞ þ id=dz�w1ðzÞ ¼ ~�w2ðzÞ; (18b)

where w�ðzÞ ¼ w2ðzÞ � w1ðzÞ. The quantum number, ~�,
plays the role of an energy for the transverse motion. A
particular selection of potentials within the symmetry
class IV was encountered in the study of the Schwinger
mechanism for particle-production in a strong confined
field [VVðzÞ ¼ 	Vz] [14,15], q �q pair creation in a flux

tube [VSð�Þ ¼ 0, ~� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ k2

p
] [16], and the canonical

quantization in cylindrical geometry of a free Dirac field
[VSð�Þ ¼ VVðzÞ ¼ 0, E2 ¼ M2 þ k2 þ p2

z] [17].
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Dirac Hamiltonians with selected external fields are
known to be supersymmetric [4–6,18]. It is, therefore,
natural to inquire whether a supersymmetric structure can
develop within each of the above symmetry classes. The
essential ingredients of supersymmetric quantum mechan-
ics [18] are the supersymmetric Hamiltonian, H , and

charges Qþ, Q� ¼ Qy
þ, which generate the supersymme-

try (SUSY) algebra ½H ; Q�� ¼ fQ�; Q�g ¼ 0,
fQ�; Qþg ¼ H . Accompanying this set is a Hermitian
Z2-grading operator satisfying ½H ;P � ¼ fQ�;P g ¼ 0
and P 2 ¼ 1. The þ1 and �1 eigenspaces of P define
the ‘‘positive-parity,’’ Hþ, and ‘‘negative parity,’’ H�,
sectors of the spectrum, with eigenvectors �ðþÞ and

�ð�Þ, respectively. The SUSY algebra imply that if �ðþÞ

is an eigenstate of H , then also �ð�Þ ¼ Q��ðþÞ is an

eigenstate of H with the same energy, unless Q��ðþÞ
vanishes or produces an unphysical state (e.g., non-
normalizable). The resulting spectrum consists of pairwise
degenerate levels with a nondegenerate single state (the
ground state) in one sector when the supersymmetry is
exact. If all states are pairwise degenerate, the supersym-
metry is said to be broken. Typical spectra for good and
broken SUSY are shown in Fig. 1. Degenerate doublets,
signaling a supersymmetric structure, can emerge in a
quantum system with a Hamiltonian H, from the existence
of two Hermitian, conserved and anticommuting operators,

R̂ and B̂

½H; R̂� ¼ ½H; B̂� ¼ fR̂; B̂g ¼ 0: (19)

The operator R̂ has nonzero eigenvalues, r, which come in

pairs of opposite signs. B̂2 ¼ B̂yB̂ ¼ fðHÞ, is a function of
the Hamiltonian. A Z2-grading operator, P r ¼ R̂=jrj, and
Hermitian supercharges Q1 ¼ B̂, Q2 ¼ iQ1P r can now be
constructed. The triad of operators Q� ¼ ðQ1 � iQ2Þ=2

andH ¼ Q2
1 ¼ fðHÞ form the standard SUSYalgebra. In

the present analysis, fðHÞ is a quadratic function of the

Dirac Hamiltonian, H, and the relevant R̂ and B̂ operators
are listed in Table I.
In the pseudospin symmetry limit, the relevant operator

B̂, connects the doublet states of Eq. (5). The spectrum, for

each ~� � 0, consists of twin towers of pairwise degenerate

pseudospin doublet states, with �1 ¼ ~�� 1=2 and �2 ¼
~�þ 1=2, and an additional nondegenerate nodeless state at

the bottom of the �1 ¼ ~�� 1=2 tower. Such nodeless
states correspond in the nonrelativistic nuclear deformed
shell-model to the ‘‘intruder’’ states, ½N; n3;� ¼
N � n3�� ¼ �þ 1=2, which, empirically, are found not
to be part of a doublet [11]. The latter property follows
from the fact that a nodeless bound Dirac state satisfies the
criteria of Eq. (2), hence has a wave function as in Eq. (5a)
with gþ, g, f � 0, and f=gþ > 0. Its pseudospin partner
state has a wave function as in Eq. (5b). The radial com-

ponents satisfy Bg� ¼ ½B� 2ð~�=�Þf=gþ�gþ, where B is
defined in Eq. (1b). This relation is satisfied, to a good
approximation, for mean-field potentials relevant to nuclei,
and the right-hand side (rhs) is nonzero and, consequently,
g� � 0. If so, then the partner state (5b) is also nodeless,
but it cannot be a bound eigenstate since its radial compo-
nents do not fulfill the condition of Eq. (2). Altogether, the
ensemble of Dirac states with �2 ��1 ¼ 1 exhibits a
supersymmetric pattern of good SUSY, as illustrated in
Fig. 2(a).
In the spin symmetry limit, the relevant operator B̂

connects the doublet states of Eq. (8). The spectrum, for
each� � 0, consists of twin towers of pairwise degenerate
spin-doublet states with �1 ¼ �� 1=2 and �2 ¼ �þ
1=2. None of these towers have a single nondegenerate
state. This follows from the fact that, in view of Eq. (2), a
nodeless bound state has a wave function as in Eq. (8a)
with g, f, f� � 0 and g=f� > 0. Its spin partner has a
wave function as in Eq. (8b). The radial components sat-
isfy Afþ ¼ ½A� 2ð�=�Þg=f��f�, where A is defined in
Eq. (1a). For relevant potentials the rhs of this relation can
vanish, hence fþ has a node. Therefore, the spin partner of
a nodeless state is not nodeless and can be a bound eigen-
state, since the restrictions of Eq. (2) do not apply.
Altogether, the ensemble of Dirac states with �2 ��1 ¼
�1 exhibits a supersymmetric pattern of broken SUSY, as
illustrated in Fig. 2(b).
Within the symmetry class III, a supersymmetry is ob-

tained for VVð�Þ ¼ 	V=� and VSðzÞ arbitrary. The energy

Q−

Q+

H+ H−
H+ H−

good SUSY broken SUSY

FIG. 1. Typical spectra of good and broken SUSY. The opera-
tors Q� and Qþ connect degenerate states in the Hþ and H�
sectors.

TABLE I. Conserved, anticommuting operators for Dirac Hamiltonians (H) exhibiting a supersymmetric structure.

SUSY R̂ B̂ B̂2 ¼ fðHÞ
VSð�; zÞ þ VVð�; zÞ ¼ �0

~̂Sz (3) 2ðMþ�0 �HÞ ~̂Sx ðMþ�0 �HÞ2
VSð�; zÞ � VVð�; zÞ ¼ �0 Ŝz (6) 2ðMþ�0 þHÞŜx ðMþ�0 þHÞ2
VS ¼ VSðzÞ, VV ¼ 	V

� R̂z (9) �̂�̂3fiĴz�5½H � �̂3R̂z� � 	V

� ð�̂ � �ÞR̂zg Ĵ2zðH2 � R̂2
zÞ þ 	2

VR̂
2
z

VS ¼ 	S

� , VV ¼ VV ðzÞ R̂� (14) �̂3fiĴz�5½M� �̂3R̂�� � 	S

� ð�̂ � �Þ�̂R̂�g Ĵ2zðR̂2
� �M2Þ þ 	2

SR̂
2
�
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eigenvalues are Eð�Þ
n�;�

¼ j�j=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 	2

V=ðn� þ �Þ2
q

(n� ¼
0; 1; 2; . . . ), with � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 	2

V

q
. From Eqs. (13) we see

that if [h1ðzÞ, h2ðzÞ] are solutions with � > 0, then [h1ðzÞ,
�h2ðzÞ] are solutions with �� < 0. Accordingly, the dou-
blet wave functions are as in Eq. (11), with the replace-

ments, ui � uð�Þi ð�Þ for �ð�Þ
n�;�

, and ui � uð��Þ
i ð�Þ,

h� � �h�ðzÞ for �ð��Þ
n�;�

. For n� � 1, the states �ð��Þ
n�;�

are degenerate. For n� ¼ 0 only one state is an acceptable

solution, which has � > 0 (assuming 	V < 0) and is anni-

hilated by the relevant operator B̂. For each � and � the
spectrum resembles a supersymmetric pattern of good
SUSY, with the towers Hþ (H�) of Fig. 1 corresponding
to states with � > 0 (� < 0).

Within the symmetry class IV, a supersymmetry is ob-
tained for VSð�Þ ¼ 	S=� (	S < 0) and VVðzÞ arbitrary.

The allowed values are ~� ¼ �M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	2

S=ðn� þ ~�Þ2
q

(n� ¼ 0; 1; 2; . . . ), where ~� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 	2

S

q
. From Eqs. (18)

we see that if [w1ðzÞ, w2ðzÞ] are solutions with ~� > 0, then
[w1ðzÞ, �w2ðzÞ] are solutions with �~� < 0 and the same
energy, E. Accordingly, the doublet wave functions are as

in Eq. (16), with the replacements, �i � �ð~�Þ
i ð�Þ for�ð~�Þ

n�;�
,

and �i � �ð�~�Þ
i ð�Þ, w� � �w�ðzÞ for �ð�~�Þ

n�;�
. For n� � 1

the states�ð�~�Þ
n�;�

are degenerate. For n� ¼ 0 only one state,

with ~� > 0, is an acceptable solution, which is annihilated
by the relevant operator B̂. Again, for each � and ~� the
resulting spectrum resembles a supersymmetric pattern of
good SUSY.

In summary, we have considered classes of symmetries
and related supersymmetries of Dirac Hamiltonians with
cylindrically deformed scalar and vector potentials. The
symmetries arise when the potentials obey a constraint on
their sum or difference, or when they depend on different
variables. The known pseudospin and spin symmetry limits
are by themselves supersymmetric. Additional super-

symmetries arise when one of the potentials has a 1=�
dependence and the second potential depends on z. It is
gratifying to note that some of the indicated (super)sym-
metries are manifested empirically, to a good approxima-
tion, in physical dynamical systems.
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