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A universal mechanism for the generation of statistical self-similarity—i.e., fractality in the context of

random processes—is established. We consider a generic system which superimposes independent

stochastic signals, producing a system output; all signals share a common statistical signal pattern, yet

each signal has its own transmission parameters—amplitude, frequency, and initiation epoch. We

characterize the class of parameter randomizations yielding statistically self-similar outputs in a universal

fashion—i.e., for whatever signals fed into the system. Statistically self-similar outputs with finite

variance further display (i) anomalous diffusion behavior—characterized by power-law temporal variance

growth—and (ii) 1=f noise behavior—characterized by power-law power spectra. The mechanism

presented is a ‘‘randomized central limit theorem’’ for fractal statistics of random processes.
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Fractal objects and structures—characterized by geome-
tries which are invariant under changes of scale—are ubiq-
uitous across the sciences and play a central role in physics
[1]. In the context of stochastic dynamics, fractality is
defined via the notion of statistical self-similarity [2]: A
random process � ¼ ½�ðtÞ�t�0 is said to be statistically self-
similar with Hurst exponent H if, for any positive scale c,
the random processes ½�ðctÞ�t�0 and ½cH�ðtÞ�t�0 are equal
in law. This means that speeding up the random process �
by the factor c is statistically equivalent to scaling it up by
the factor cH. Visually, zooming in and out on the sample-
path trajectory of a statistically self-similar random process
yields, statistically, the same ‘‘picture’’—parts of the tra-
jectory, once scaled, look like the whole trajectory.

Four key examples of statistically self-similar random
processes are (i) Brownian motion—the random and er-
ratic motion of diffusion—apparently the most fundamen-
tal and abundant type of stochastic dynamics encountered
in nature; (ii) fractional Brownian motions [3]; (iii) Lévy
motions [4]; (iv) fractional stable Lévy motions [5,6].

In this Letter, we study the origins of statistical self-
similarity and establish a universal mechanism for the
generation of this phenomenon. In what follows, we con-
struct a stochastic superposition model—a system receiv-
ing random input signals and producing a random output
process—which generates statistical self-similarity in a
universal ‘‘central limit theorem fashion’’: The system
yields statistically self-similar output processes for what-
ever input signals fed into it.

Statistical self-similarity is prevalent in Internet-age
information traffic [7,8]—especially in the case of major
communication channels and routers fed by numerous
transmission sources. This empirical observation motivates
the modeling of systems which superimpose many signal
processes—aggregating them up to produce a collective
system-output process. In this research we consider a

generic such system which superimposes a multitude of
independent signal processes: all signal processes gov-
erned by a common—yet arbitrary—stochastic dynamics
and thus sharing a common statistical signal pattern; each
signal process having its own transmission parameters—
amplitude, frequency, and initiation epoch.
Specifically, process k transmits the signal pattern Xk ¼

½XkðtÞ�t�0 with amplitude ak (real valued), frequency !k

(positive valued), and initiation epoch �k (non-negative
valued). The system superimposes all signal processes—
yielding the output process Y ¼ ½YðtÞ�t�0 given by

YðtÞ ¼ X
�k�t

akXkð!kðt� �kÞÞ: (1)

The processes’ signal patterns fXkgk are assumed indepen-
dent and identically distributed (i.i.d.) copies of a common
generic signal pattern X ¼ ½XðtÞ�t�0. The superposition
model of Eq. (1) can be regarded as a stochastic trans-
formation mapping the random input signal pattern X to
the random output process Y.
The origins of the superposition model of Eq. (1)

can be traced back to the comprehensive studies of Rice
on shot noise [9,10]: Setting XðtÞ¼’ðtÞ—where ’ðtÞ is an
impulse-response function decaying to zero
[limt!1’ðtÞ ¼ 0]—renders the output Y a shot noise pro-
cess. The superposition model of Eq. (1) is also related to
wavelet analysis [11]: Setting XðtÞ ¼ ’ðtÞ—where ’ðtÞ is
a mother wavelet—renders the output process Y a random
wavelet expansion. Yet another example of a deterministic
signal pattern is XðtÞ ¼ sinðtÞ—rendering the output pro-
cess Y a random superposition of harmonic signals.
The processes’ transmission parameters P ¼

fðak;!k; �kÞgk form a collection of points scattered arbi-
trarily on the three-dimensional domain D ¼ ð�1;1Þ �
ð0;1Þ � ½0;1Þ. In large systems—as considered here—it
is natural to assume that the parameters P follow some
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statistical regularity. The common statistical method for
the random scattering of points in general domains is that
of Poisson point processes [12]. Poisson point processes
have a wide spectrum of applications ranging from insur-
ance and finance [13] to queueing systems [14]. In recent
years, we applied Poissonian randomizations in various
topics in statistical physics, obtaining results which are
unattainable by i.i.d. randomizations—see [15,16], and
references therein.

Henceforth, the parameters P are assumed a Poisson
point process with intensity �ðx; y; zÞ. Informally, this
means that a signal process with transmission parameters
ða;!; �Þ belonging to the infinitesimal box ðx; xþ dxÞ �
ðy; yþ dyÞ � ðz; zþ dzÞ exists with probability
�ðx; y; zÞdxdydz. More precisely, this means that [12]:
(i) the number of signal processes with transmission pa-
rameters residing in a subdomain D (of the domain D) is
Poisson-distributed with mean

RRR
D�ðx;y;zÞdxdydz;

(ii) the number of signal processes with transmission pa-
rameters residing in disjoint subdomains (of the domain
D) are independent random variables. The Poissonian
intensity �ðx; y; zÞ governs the statistics of the transmis-
sion parameters P .

The theoretical question we address in this Letter is the
following: Can the transmission parameters P be random-
ized so that the output process Y will always be statistically
self-similar—regardless of the choice of the input signal
pattern X? The answer is affirmative. Analysis shows that
the output process Y is statistically self-similar with Hurst
exponent H—regardless of the choice of the input signal
pattern X—if and only if the Poissonian intensity�ðx; y; zÞ
satisfies the scaling relation

�

�
cHx;

y

c
; cz

�
¼ 1

cH
�ðx; y; zÞ (2)

[ðx; y; zÞ 2 D; c being an arbitrary positive scale]. For
example, Poissonian intensities of the form �ðx; y; zÞ ¼
x"1y"2z"3 satisfy Eq. (2) with H ¼ ð"2 � "3Þ=ð1þ "1Þ.

Equation (2) establishes a universal mechanism for the
generation of statistical self-similarity: No matter what
input signal pattern X is fed into the system, a proper
Poissonian randomization of the transmission parameters
will always yield an output process Y which is statistically
self-similar with Hurst exponent H. If we regard the input
signal pattern X and the output process Y, respectively, as
the system’s microscopic and macroscopic levels, then
universality is attained by transcending from the system’s
microscopic level to its macroscopic level. Equation (2)
also establishes yet another connection between Poisson
point processes and stochastic fractality [17–19].

The Poissonian randomization method is reminiscent of
the central limit theorem (CLT): By using a proper deter-
ministic scaling, the aggregates of i.i.d. random variables
(with finite variance) always converge to the universal
Gaussian law—regardless of the choice of the random

variables’ probability law. Here the i.i.d. signal patterns
fXkgk replace the CLT i.i.d. random variables, the super-
position of Eq. (1) replaces the CLT aggregate, and the
random transmission parameters P replace the CLT deter-
ministic scaling. Because of this analogy, the Poissonian
randomization method can be regarded as a ‘‘randomized
central limit theorem’’ for statistical self-similarity.
It should be emphasized, however, that the superposition

of Eq. (1) does not necessarily span the entire class of
statistically self-similar random processes. The mechanism
established here is ‘‘universal’’ in the sense that all input
signal patterns X (when properly randomized) yield statis-
tically self-similar output processes Y—rather than in the
sense that it is capable of generating all statistically self-
similar processes. Indeed, to generate a specific statisti-
cally self-similar random process (e.g., a fractional
Brownian motion), all of its multidimensional marginal
distributions need to be met—rather than only its self-
similarity structure (which is characterized by a one-
dimensional parameter—the Hurst exponent H). To that
end, the mechanism presented here should be distinguished
from models yielding stochastic convergence to fractional
Brownian motions—see [20,21], and references therein.
Let us examine now the case of self-similar output

processes with finite variance. In this case, scaling argu-
ments imply that if the output process Y is statistically self-
similar with Hurst exponent H, then (i) its temporal vari-
ance growth follows the power law

hYðtÞ2i � hYðtÞi2 ¼ CVt
2H (3)

(t � 0; CV being a positive constant); (ii) its power spec-
trum follows the power law

lim
T!1

1

T

���������
Z T

0
expðiftÞYðtÞdt

��������
2
�
¼ CSjfj�2H�1 (4)

(f real; CS being a positive constant).
The temporal power-law variance growth of Eq. (3)

characterizes anomalous diffusion [22,23]—subdiffusive
in the Hurst range H < 1

2 and superdiffusive in the Hurst

range H > 1
2 . Also, the power-law power spectrum of

Eq. (4) characterizes 1=f noise (‘‘flicker’’ noise) [24,25].
Both anomalous diffusion and 1=f noise are statistical
phenomena ubiquitously observed across various fields of
science and engineering and are the hallmarks of non-
diffusive transport [26]. Equation (2) is thus—in the case
of finite variance—also a universal mechanism for the
generation of these statistical phenomena.
By using probabilistic conditioning and results from the

theory of Poisson processes [Ref. [12], Eqs. (3.9)–(3.10)],
it can be shown that a necessary and sufficient condition
for the self-similar output process Y to possess a finite
variance is

Z 1

�1

Z 1

0

Z 1

0
½x2c Xðyð1� zÞÞ��ðx; y; zÞdxdydz <1; (5)
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where c XðtÞ ¼ hXðtÞ2i (t � 0) is the mean square dis-
placement of the signal pattern X. We note that the finite-
variance condition of Eq. (5) does depend on the choice of
the input signal pattern X.

Consider now Poissonian intensities which decouple
time and amplitude frequency—i.e., intensities admitting
the functional form �ðx; y; zÞ ¼ �ðx; yÞ�ðzÞ. For the scal-
ing relation of Eq. (2) to hold, �ðzÞ is required to be a
homogeneous function. Also, if the function �ðzÞ is homo-
geneous with exponent "—i.e., �ðczÞ ¼ c"�ðzÞ (z non-

negative; c positive; " real)—then (i) the scaling relation
of Eq. (2) holds if and only if the function �ðx; yÞ satisfies
the scaling relation

�

�
cHx;

y

c

�
¼ 1

cHþ" �ðx; yÞ (6)

(x real; y and c positive); (ii) the finite-variance condition
of Eq. (5) is met if and only if

Z 1

�1

Z 1

0
½x2�Xðy;"Þ��ðx; yÞdxdy <1; (7)

where �Xðy; "Þ ¼
R
1
0 c XðyuÞð1� uÞ"du (y positive).

A special case of decoupled Poissonian intensities is the
‘‘shot noise scenario’’ in which signal processes with
amplitude a and frequency ! appear, randomly in time,
at rate �ða;!Þ; in this special case �ðzÞ � 1, " ¼ 0, and
the finite-variance condition of Eq. (7) holds with
�Xðy; 0Þ ¼

R
1
0 c XðyuÞdu. Yet another special case of de-

coupled Poissonian intensities is the ‘‘simultaneous initia-
tion scenario’’ in which all signal processes initiate at time
zero (i.e., �k ¼ 0 for all k); in this special case �ðzÞ is
Dirac’s delta function, " ¼ �1, and the finite-variance
condition of Eq. (7) holds with the function c XðyÞ replac-
ing the function �Xðy; "Þ.
An entire class of functions �ðx; yÞ satisfying the scaling

relation of Eq. (6) is given by

�ðx; yÞ ¼ �ðjxjyHÞyHþ"; (8)

where �ðsÞ (s � 0) is a positive valued function. The
intensities of Eq. (8) meet the finite-variance condition of
Eq. (7) if and only if the following three conditions are
satisfied: (C1) Exponents:�1 � " < 2H, where the expo-
nent value " ¼ �1 corresponds to the simultaneous ini-
tiation scenario. (C2) Poissonian randomization:R1
0 �ðsÞs2ds <1. (C3) Input mean square displacement:R1
0 c XðtÞt"�2Hdt <1.

Since condition (C3) is input-dependent, each input
signal pattern X has a different range of Hurst exponents

TABLE I. The class of Poissonian intensities of Eq. (8): ex-
amples of deterministic input signal patterns X and their corre-
sponding finite-variance Hurst ranges. The parameters p and q
appearing in examples 3–5 are, respectively, positive and real; in
examples 3 and 5, it is required that q > ".

Input signal XðtÞ ¼ Hurst range

1 sinðtÞ 1þ"
2 <H < 3þ"

2

2 expð�tÞ sinðtÞ maxf0; "2g<H < 3þ"
2

3 expð�tpÞtq�1 maxf0; "2g<H < qþ"
2

4 expð�t�pÞtq�1 maxf0; "2 ; qþ"
2 g<H <1

5 ð1þ tÞ�ptq�1 maxf0; "2 ; q�pþ"
2 g<H < qþ"

2
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FIG. 1 (color online). Monte Carlo simulations of sample-path
trajectories of the output process Y. Poissonian randomiza-
tion: The intensity of Eq. (8) with �ðsÞ ¼ expð�sÞ and
" ¼ 0—the shot noise scenario. Number of superimposed signal
processes: Poisson-distributed with mean � ¼ 50 000. Input
signal pattern: XðtÞ ¼ expð�tÞ sinðtÞ. Hurst exponents: H ¼
0:3 in (a), H ¼ 0:5 in (b), and H ¼ 0:7 in (c).
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for which the self-similar output process Y is of finite
variance. Finite-variance Hurst ranges for various ex-
amples of deterministic input signal patterns X are given
in Table I. Monte Carlo simulations of sample-path trajec-
tories of the output process Y, for Example 2 of Table I [the
deterministic signal pattern XðtÞ ¼ expð�tÞ sinðtÞ, with
�ðsÞ ¼ expð�sÞ and " ¼ 0—the shot noise scenario], are
depicted in Fig. 1: H ¼ 0:3 in Fig. 1(a), H ¼ 0:5 in
Fig. 1(b), and H ¼ 0:7 in Fig. 1(c).

As an example of a stochastic signal pattern X, con-
sider the Ornstein-Uhlenbeck process—the stochastic mo-
tion governed by the Langevin equation [27]. The mean
square displacement of the Ornstein-Uhlenbeck process
is of the form c XðtÞ ¼ �½1� expð��tÞ� (� and �
being positive parameters), and hence the corresponding
Hurst range is 1þ"

2 <H < 2þ"
2 . In the shot noise scenario

" ¼ 0, and the output process Y is thus superdiffusive with
1
2 <H < 1. Also, in the simultaneous initiation scenario

" ¼ �1, and the output process Y is thus subdiffusive with
0<H < 1

2 .

This Letter established a universal mechanism for the
generation of fractality in the context of random processes.
The mechanism is a randomized central limit theorem for
fractal statistics of random processes: self-similarity,
anomalous diffusion, and 1=f noise. For the detailed
proofs of the results presented in this Letter, readers are
referred to Ref. [28].

We considered the generic system model of Eq. (1): the
superposition of many independent stochastic signal pro-
cesses, all processes sharing a common statistical signal
pattern X, yet each process having its own transmission
parameters—amplitude, frequency, and initiation epoch.
Considering randomized transmission parameters, we
proved that the system’s superimposed output process Y
is statistically self-similar—for whatever signal processes
fed into the system—if and only if the parameter random-
ization is governed by Poissonian intensities satisfying the
scaling relation of Eq. (2).

In the case of finite-variance output processes, statistical
self-similarity further induces both anomalous diffusion
and 1=f noise behaviors—the hallmarks of nondiffusive
transport. The statistically self-similar output processes
were shown to be of finite variance if and only if the
integrability condition of Eq. (5) is met—in which case
the anomalous diffusion and 1=f noise behaviors are given,
respectively, by Eqs. (3) and (4). Last, special cases of
Poissonian intensities which decouple time and amplitude
frequency were analyzed and exemplified.

The authors thank Dr. Ariel Lubelski for the process-
simulations appearing in Fig. 1 and the anonymous refer-
ees for their constructive and helpful remarks.
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