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A modified fluctuation-dissipation theorem for a nonequilibrium steady state is experimentally checked

by studying the position fluctuations of a colloidal particle whose motion is confined in a toroidal optical

trap. The nonequilibrium steady state is generated by means of a rotating laser beam which exerts on the

particle a sinusoidal conservative force plus a constant nonconservative one. The modified fluctuation-

dissipation theorem is perfectly verified by the experimental data. It can be interpreted as an equilibrium-

like fluctuation-dissipation relation in the Lagrangian frame of the mean local velocity of the particle.
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The validity of the fluctuation-dissipation theorem
(FDT) in systems out of thermal equilibrium has been the
subject of intensive study during the past years. We recall
that, for a system in equilibrium with a thermal bath at
temperature T, the FDT establishes a simple relation be-
tween the two-time correlation functionCðt� sÞ of a given
observable and the linear response function Rðt� sÞ of this
observable to a weak external perturbation

@sCðt� sÞ ¼ kBTRðt� sÞ: (1)

However, Eq. (1) is not necessarily fulfilled out of equilib-
rium, and violations are observed in a variety of systems
such as glassy materials [1–5], granular matter [6], and
biophysical systems [7]. This motivated a theoretical work
devoted to a search of a general framework describing FD
relations; see the review [8] or [9–14] for recent attempts in
simple stochastic systems. In the same spirit, a modified
fluctuation-dissipation theorem (MFDT) has been recently
formulated for a nonequilibrium steady dynamics gov-
erned by the Langevin equation with nonconservative
forces [15]. In particular, this MFDT holds for the over-
damped motion of a particle on a circle, with angular
position �, in the presence of a periodic potential Hð�Þ ¼
Hð�þ 2�Þ and a constant nonconservative force F:

_� ¼ �@�Hð�Þ þ Fþ �; (2)

where � is a white noise term of mean h�ti ¼ 0 and
covariance h�t�si ¼ 2D�ðt� sÞ, with D the (bare) diffu-
sivity. This is a system that may exhibit an increase in the
effective diffusivity [16,17]. Here we shall study the dy-
namical nonequilibrium steady state (NESS) reached for
observables that depend only on the particle position on the
circle and so are periodic functions of the angle �. Such a
state corresponds to a constant nonvanishing probability
current j along the circle and a periodic invariant proba-
bility density function �0ð�Þ that allow us to define a mean
local velocity v0ð�Þ ¼ j=�0ð�Þ. This is the average veloc-
ity of the particle at �. For a stochastic system in NESS

evolving according to Eq. (2), the MFDT reads for t � s

@sCðt� sÞ � bðt� sÞ ¼ kBTRðt� sÞ; (3)

where the two-time correlation of a given observable Oð�Þ
is defined by

Cðt� sÞ ¼ hOð�tÞOð�sÞi0; (4)

and the linear response function to a � perturbation of the
conjugated variable ht is given by the functional derivative

Rðt� sÞ ¼ �

�hs

�
�
�
�
�
�
�
�h¼0

hOð�tÞih: (5)

In Eq. (5), h. . .ih denotes the average in the perturbed time-
dependent state obtained from the NESS by replacingHð�Þ
in Eq. (2) by Hð�Þ � htOð�Þ. It reduces for h ¼ 0 to the
NESS average h. . .i0. In Eq. (3), the correlation bðt� sÞ is
given by

bðt� sÞ ¼ hOð�tÞv0ð�sÞ@�Oð�sÞi0: (6)

This new term takes into account the extent of the violation
of the usual fluctuation-dissipation relation (1) due to the
probability current, and it plays the role of a corrective
term to Cðt� sÞ in the MFDT [Eq. (3)], which can be
rewritten in the integral form

Cð0Þ � CðtÞ � BðtÞ ¼ kBT�ðtÞ; (7)

where BðtÞ � R
t
0 bðt� sÞds and �ðtÞ ¼ R

t
0 Rðt� sÞds is

the integrated response function.
In this Letter, we present an experimental test of Eq. (7)

in the linear response regime around a NESS attained by a
micron-sized particle in a toroidal optical trap similar to
the one used in [12]. We first show that the dynamics of the
particle is well described by the Langevin equation (2) on a
circle. Second, by measuring v0, BðtÞ, CðtÞ, and �ðtÞ, we
verify Eq. (7) for the observable Oð�Þ ¼ sin�. The result
can be interpreted as an equilibriumlike fluctuation-
dissipation relation in the Lagrangian frame of the mean
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local velocity v0ð�Þ [15]. We also check that �0ð�Þ is frame
invariant.

The experiment is performed using a spherical silica
particle of radius r ¼ 1 �m in ultrapure water at room
temperature T ¼ 20:0� 0:5 �C at which the dynamic vis-
cosity of water is � ¼ ð1:002� 0:010Þ � 10�3 Pa s. The
particle is kept by an optical tweezers in a toroidal optical
trap. This kind of trap consists on a Nd:YAG diode pumped
solid state laser beam (	 ¼ 1064 nm) which is focused by
a microscope objective (63� , numerical aperture of 1.4)
and scans (by means of two acousto-optic deflectors) a
circle of radius a ¼ 4:12 �m in the horizontal plane at a
rotation frequency of 200 Hz. The toroidal trap is created
10 �m above the inner bottom surface of the cell, where
hydrodynamic boundary-coupling effects on the particle
are negligible. At a rotation frequency of 200 Hz, the laser
beam is not able to hold the particle but drags it regularly a
small distance on the circle when passing through it [18].
The diffusive motion of the particle along the radial and
vertical directions during the absence of the beam is less
than 40 nm, and thus the angular position of the particle �
(measured modulo 2�) is the only relevant degree of free-
dom of the dynamics. The laser power is sinusoidally
modulated around 30 mW with an amplitude of 7% of
the mean power, synchronously with the deflection of the
beam at 200 Hz creating a static sinusoidal intensity profile
along the circle. This trapping situation acts as a constant
nonconservative force f associated to the mean kick which
drives the particle across a sinusoidal potential Uð�Þ due
to the periodic intensity profile. The particle barycenter
ðxt; ytÞ is measured by the image analysis technique de-
scribed in [19] using a high-speed camera at a sampling
rate of 150 Hz and exposure time of 1=300 s with a spatial
resolution of 103 nm=pixel leading to an accuracy better
than 10 nm. This measure allows us to determine the
angular position of the particle �t with respect to the trap
center. For more details about the experimental apparatus,
see Ref. [20]. We determine the value of f and the profile
of Uð�Þ by means of the method described in [21]. This
method exploits the probability current j and the invariant
density �0ð�Þ in NESS to reconstruct the actual energy
landscape of the particle. We recorded 200 time series f�tg
of duration 66.67 s with different initial conditions f�0g
sampled every 5 minutes in order to measure j and �0ð�Þ.
The probability current is related to the global mean ve-
locity of the particle by the expression j ¼ h _�i0=ð2�Þ. The
value of h _�i0 is calculated from the slope of the linear fit of
the mean angular position of the particle (not taken modulo
2�) as a function of time leading to j ¼ 3:76� 10�2 s�1

in the direction of the laser beam rotation. The invari-
ant density, shown as a solid black line in Fig. 1(a), is
computed from the histogram of each time series f�tg
averaged over the 200 different initial conditions. In Fig. 1
(a), we also show the mean local velocity v0ð�Þ ¼ j=�0ð�Þ
of the particle. From these quantities we obtain f ¼

3�raj
R
2�
0 �0ð�0Þ�1d�0 ¼ 6:60� 10�14 N and Uð�Þ ¼

�kBT log�0ð�Þ þ
R
�
0½f� 6��raj�0ð�0Þ�1�ad�0 ¼ A sin�

with amplitude A ¼ 68:8kBT. The experimental potential
profile is shown in Fig. 1(b) (black solid line). Hence, the
time evolution of � is claimed to follow the Langevin
dynamics of Eq. (2) [21] with F ¼ f=ð6��raÞ ¼
0:85 rad s�1, Hð�Þ ¼ Uð�Þ=ð6��ra2Þ ¼ H0 sin�, H0 ¼
A=ð6��ra2Þ ¼ 0:87 rad s�1, and D ¼ kBT=ð6��ra2Þ ¼
1:26� 10�2 rad2 s�1. Note that in the corresponding
equilibrium situation (f ¼ 0) the probability maximum
would be located at the minimum of Uð�Þ (� ¼ 3�=2).
However, in NESS the nonconservative force f > 0 shifts
the maximum of �0ð�Þ in the positive direction, as shown
in Fig. 1(a). The choice of the parameters has been done to
enhance the stochastic nature of the dynamics; i.e., we take
ðF�H0Þ=H0 	 �2%, which is close to the maximum
increase of the effective diffusivity following Refs. [16,17].
Additionally, 500 times series of duration 100 s were

specially devoted for the determination of�ðtÞ. In this case,
during each interval of 100 s we apply from time t0 to t0 þ
�t with 0< t0 < 66:67 s and �t ¼ 33:33 s a step pertur-
bation changing the value of A to Aþ �A. This is accom-
plished by suddenly switching the laser power modulation
from 7% to 7.35% of the mean power (30 mW). The
experimental value of the amplitude perturbation (�A ¼
0:05A) is determined from independent NESS measure-
ments of �0ð�Þ and Uð�Þ for a power modulation of 7.35%
[shown in Figs. 1(a) and 1(b), respectively, as red dashed
lines] as described previously. By keeping constant the
mean power during the switch, we ensure that the value
of f remains also constant, compared to a different time-
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FIG. 1 (color online). (a) Invariant density of the angular
position of the particle in NESS for a modulation of 7% (black
solid line) and 7.35% (red dashed line) around the laser mean
power. Inset: Mean local velocity of the particle in the former
case. (b) Corresponding potential profiles. The arrow indicates
the direction of the nonconservative force f.
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dependent protocol explored recently in [22]. In this way,
we extract 500 perturbed trajectories f�tg�A of duration
�t ¼ 33:33 s. We ensure that after switching off the per-
turbation the system actually has attained a NESS before
the beginning of the next step perturbation.

With the purpose of determining correctly the different
terms involved in Eq. (7), the observable Oð�Þ must be
chosen consistently on both sides of such a relation. The
change of the potential Uð�Þ ! Uð�Þ þ �A sin� due to
the application of the step perturbation implies thatOð�Þ ¼
sin� is the observable that must be studied with ��A
as its conjugate variable. Hence, we compute the correla-
tion function CðtÞ, the corrective term BðtÞ [with @�Oð�Þ ¼
cos� and the experimental curve v0ð�Þ shown in Fig. 1(a)],
and the integrated response �ðtÞ for this observable, as
functions of the time lag t.

The determination of CðtÞ and BðtÞ is straightforward
according to Eqs. (4) and (6). The stationarity of the system
allows us to perform an average over the time origin in
addition to the ensemble average h. . .i0 over the 200 differ-
ent time series devoted to this purpose, which increases
enormously the statistics. The dependence of Cð0Þ � CðtÞ
and BðtÞ on t is shown in Fig. 2(a) as green dotted-dashed
and blue dashed lines, respectively.

On the other hand, the integrated response �ðtÞ is given
by

�ðtÞ ¼ hOð�tÞi�A � hOð�tÞi0
��A

: (8)

In Eq. (8), the value t ¼ 0 corresponds to instant t0 when
the perturbation of the potential amplitude �A is switched
on. To decrease the statistical errors in comparison of the
terms in Eq. (8), for a given perturbed trajectory �t�A we
look for as many unperturbed ones �t as possible among
the 200 time series f�tg starting at a time t
 such that
Oð�t
 Þ ¼ Oð�0�AÞ. Then we redefine t
 as t ¼ 0 in
Eq. (8), as shown in Fig. 3. The unperturbed trajectories
found in this way allow us to define a subensemble over
which the average hOð�tÞi0 in Eq. (8) is computed at a
given t. The average hOð�tÞi�A is simply computed over the
500 perturbed time series. In Fig. 2(a), we show as a thick
dashed red line the dependence of the integrated response
on t.
The comparison between the different terms needed to

verify Eq. (3) is shown in Fig. 2(a), for the time lag interval
0< t < 3:5 s. As expected, the usual FD relation (1) is
strongly violated in this NESS because of the broken
detailed balance, with the correlation term Cð0Þ � CðtÞ
being 1 order of magnitude larger than the response term
kBT�ðtÞ. However, with the corrective term BðtÞ associated
to the probability current subtracted, Cð0Þ � CðtÞ � BðtÞ
shown as a solid black line in Fig. 2(a), becomes equal to
kBT�ðtÞ. For clarity, in Fig. 2(b), we show an expanded
view of the curves Cð0Þ � CðtÞ � BðtÞ and kBT�ðtÞ. We
observe that, within the experimental error bars, the agree-
ment between both terms is quite good, verifying the
integrated form of the modified FD relation (7). The error
bars of the integrated response curve at each time lag t are
obtained from the standard deviation of the subensemble of
unperturbed trajectories found for each perturbed trajec-
tory, like the ones shown as thin solid lines in Fig. 3. We
checked that the perturbation �A ¼ 0:05A is small enough
to remain within the linear response regime. This is quan-
titatively seen in Fig. 2(b), where the response measured at
�A ¼ 0:07A is represented by circles. We see that �ðtÞ is
independent of �Awithin experimental errors showing that
we are in the linear response regime. TheMFDT is checked
only for the first 3.5 s, because after this time the evaluation
of �ðtÞ is affected by large errors. Indeed, during the
measurement of �ðtÞ, for finite �A the system is approach-
ing a new NESS which depends nonlinearly on �A [see the
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FIG. 2 (color online). (a) Comparison between the different
terms needed to verify Eq. (7), as functions of the time lag t.
(b) Expanded view of the comparison between the curves Cð0Þ �
CðtÞ � BðtÞ and kBT�ðtÞ shown in (a). The thin red dashed lines
represent the error bars of the integrated response.
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FIG. 3 (color online). Example of trajectories used to compute
the integrated response. We show a perturbed trajectory (thick
dashed red line) and four out of a total of 200 of the correspond-
ing unperturbed ones (see text).
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strong nonlinear dependence of �0 on �A in Fig. 1(a)]. The
perturbed trajectories diverge with respect to the unper-
turbed ones (Fig. 3) in such a way that after 3.5 s the
nonlinear effects and the statistical error bars of �ðtÞ due
to finite sampling become large.

As shown in [15], the validity of Eq. (7) for the fluctua-
tions of the angular position of the silica particle in NESS
gains a simpler interpretation in the Lagrangian frame of
the mean local velocity v0ð�Þ along the circle.

Indeed, by using the observables that are time indepen-
dent in the Lagrangian frame, the MFDT may be rewritten
in the form

@sCLðt; sÞ ¼ kBTRLðt; sÞ; (9)

where CL and RL are the correlation and the response
measured in the Lagrangian frame, respectively. Equa-
tion (9) is close to that of the equilibrium FDT [Eq. (1)]
except for the lack of the time translation invariance of the
functions involved. One of the new predictions of the
Lagrangian analysis of the system is that, although the
trajectories in the Eulerian and the Lagrangian frame are
quite different, their average density �0 is the same in the
two frames. This property is clearly illustrated by the
experimental data in Fig. 4, where we compare the den-
sities measured in the two frames. The insets in Fig. 4 point
out the difference between a trajectory measured in the
Eulerian frame and the same trajectory measured in the
Lagrangian frame.

We have verified experimentally a modified fluctuation-
dissipation relation describing the dynamics of a system
with one degree of freedom in NESS, namely, a Brownian

particle moving in a toroidal optical trap. We point out that
the experimental results reported here represent an alter-
native approach to nonequilibrium fluctuation-dissipation
relations to that of Ref. [12], which dealt with the velocity
fluctuations relative to the mean local velocity. The ap-
proach followed in our work relies on an observable de-
pending on the particle position. It quantifies the extent of
the violation of the usual FDT by means of the term BðtÞ,
admitting a transparent Lagrangian interpretation of the
resulting MFDT.

[1] L. F. Cugliandolo, J. Kurchan, and L. Peliti, Phys. Rev. E
55, 3898 (1997).

[2] T. S. Grigera and N. E. Israeloff, Phys. Rev. Lett. 83, 5038
(1999); L. Bellon, S. Ciliberto, and C. Laroche, Europhys.
Lett. 53, 511 (2001); D. Herisson and M. Ocio, Phys. Rev.
Lett. 88, 257202 (2002); L. Buisson and S. Ciliberto,
Physica (Amsterdam) 204D, 1 (2005).

[3] L. Berthier and J.-L. Barrat, Phys. Rev. Lett. 89, 095702
(2002).

[4] A. Crisanti and F. Ritort, J. Phys. A 36, R181 (2003).
[5] P. Calabrese and A. Gambassi, J. Phys. A 38, R133 (2005).
[6] A. Barrat, V. Colizza, and V. Loreto, Phys. Rev. E 66,

011310 (2002).
[7] K. Hayashi and M. Takano, Biophys. J. 93, 895 (2007).
[8] U. Marini Bettolo Marconi, A. Puglisi, L. Rondoni, and

A. Vulpiani, Phys. Rep. 461, 111 (2008).
[9] K. Hayashi and S. I. Sasa, Phys. Rev. E 69, 066119 (2004).
[10] T. Harada and S. I. Sasa, Phys. Rev. Lett. 95, 130602

(2005).
[11] T. Speck and U. Seifert, Europhys. Lett. 74, 391 (2006).
[12] V. Blickle, T. Speck, C. Lutz, U. Seifert, and C. Bechinger,

Phys. Rev. Lett. 98, 210601 (2007).
[13] T. Sakaue and T. Ohta, Phys. Rev. E 77, 050102(R) (2008).
[14] M. Baiesi, C. Maes, and B. Wynants, arXiv:0902.3955v1.
[15] R. Chetrite, G. Falkovich, and K. Gawedzki, J. Stat. Mech.

(2008) P08005.
[16] P. Reimann, C. Van den Broeck, H. Linke, P. Hänggi, J.M.
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FIG. 4 (color online). Invariant density measured in the
Eulerian frame (continuous line) [same as in Fig. 1(a)] and in
the Lagrangian frame (*). Inset: Example of a trajectory mea-
sured, respectively, in (a) the Eulerian and (b) Lagrangian
frames.
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