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We study the impact of human activity patterns on information diffusion. To this end we ran a viral
email experiment involving 31 183 individuals in which we were able to track a specific piece of
information through the social network. We found that, contrary to traditional models, information travels
at an unexpectedly slow pace. By using a branching model which accurately describes the experiment, we
show that the large heterogeneity found in the response time is responsible for the slow dynamics of
information at the collective level. Given the generality of our result, we discuss the important
implications of this finding while modeling human dynamical collective phenomena.

DOI: 10.1103/PhysRevLett.103.038702

Modeling social dynamic phenomena as emerging from
the interaction of individuals has recently attracted a lot of
activity by statistical physicists [1]. Examples include
epidemics spreading [2—4], cooperation, opinion forma-
tion, cultural dynamics, diffusion of innovations [5], etc.
All of them are determined by the way humans spread or
share information and thus depend on the rhythms and
activity patterns of humans [6-9]. Despite its importance,
detailed empirical data on how humans disseminate a
specific piece of information are scarce or indirect [10—
13]. Most understanding comes from epidemiological
models run on empirical or synthetic social networks [2—
4,14]. These models usually neglect human activity pat-
terns, assuming that the response time 7p, i.e., the time it
takes for an individual to resend the information, is homo-
geneous or described by an exponential distribution which
leads to a Poissonian description for human activity pat-
terns. The main justification for this approximation is that
it allows theoretical and computational descriptions
through simpler Markovian (nonmemory) models. How-
ever, recent research shows that human activity is much
more heterogeneous than considered in stark contradiction
with the Poissonian approximation. For example, email
activity [6-8], market trading frequencies, Web page visits
[9], or activity in online social spaces [13,15] are all
described by heavy-tailed or power-law distributions. We
show how the large heterogeneity of human activity
rhythms controls the information diffusion dynamics and
question the validity of current models to describe it.

The same issue was considered in Ref. [16], where the
authors investigate the effect of heavy-tailed distribu-
tions observed for 7, the time between consecutive emails
(the interevent time), in email communication [6-8,17].
The authors proposed a relationship between 7 and 7g:
The response time can be approximated (from below) by
the time elapsed between receiving and sending emails
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Trs- If incoming emails arrive at random times, average
Tg is given by the solution of the waiting time paradox in
renewal processes 7p = Trg = 75/2(1 + 02/7%) [18].
The database [17] used in Ref. [16] gives 7x = 1 day and
op = 3.3 days, and then 7 =~ 6 days. Thus while the av-
erage interevent time is around one day, its heterogeneity
makes the response time much bigger and information
travels slower than expected. However, this is a poor
approximation for 7 since receiving an email may trigger
action on it which correlates the reception and forwarding
events. In fact, the same database [17] used in Ref. [16]
contains data on incoming and outgoing emails from
whence one can obtain that Trg = 2.5 hours, and then the
approximation 7 = Trg used in Ref. [16] yields the oppo-
site conclusion: Information should travel much faster than
expected.

This example highlights an important shortcoming of
currently available data: the inability to resolve the dynam-
ics of a specific content item at the individuals’ level (see,
however, [10]). This forces one to make inferences about
the dynamics from online communication data [12,13], or
without knowledge of the nature of information transmit-
ted [16,17], or from population averaged results [11]. In
order to overcome this limitation, we conducted a large
scale experiment to measure the influence of human activ-
ity on the diffusion of a specific piece of information.
Subscribers to an online newsletter in 11 European coun-
tries were rewarded for recommending it. The offering
email spread through viral propagation [19] tracked at
every step. Web advertising spurred 7154 individuals to
start recommendation cascades (Fig. 1) that, driven by
2111 secondary spreaders, grew until a total of
31 183 people received the message, 77% of them through
recommendation emails. The propagation graph contains
7188 cascades of sizes between 2 and 146 nodes and
diameters of up to 8 propagation steps [20].
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FIG. 1. Cascade with 122 nodes and 6 propagation steps found
in the experiments. It starts out of a seed in the center (black) and
grows by propagation through viral nodes (gray).

Although message infection and propagation can be
quite involved processes, population-level analyses de-
scribe viral propagation as a function of the basic repro-
ductive number Ry, i.e., the average number of secondary
cases generated by each informed individual [11,14]. If
Ry > 1, propagation reaches the tipping point where infor-
mation reaches a significant fraction of the target popula-
tion, but if Ry < 1, propagation dies quickly. Secondary
spreaders passed the message to 7 = 2.96 individuals on
average. Just a fraction A = 0.0879 of those receiving it
were infected by the viral process and forwarded the mes-
sage again. Thus, the average of secondary cases per
infected individual Ry = A7 = 0.26 is below the tipping
point. While R is small, the large heterogeneity in the
individual values of r and A (see Fig. 2) led to a big
variation in the cascade sizes found in our experiments
[20]. Such heterogeneity was not enough to sustain the
spreading, and all cascades stopped propagating after a
finite number of recommendation steps. The campaign
was a viral success [11], nevertheless, as the number of
individuals virally reached was 4 times that of seeds.

A striking feature of the viral cascades found was the
scarcity of loops, triangles, or closed paths (Fig. 1). Email
redundancy (i.e., the fraction of emails sent to already
informed individuals) was just 0.74% as cascades were
mostly treelike shaped. This fact has also been found in
recommendation cascades of online retailers [21] or infor-
mation cascades in the blogosphere [13]. However, social
networks are locally dense, and a large fraction of links
connects members of communities or groups internally
[22] anticipating a larger email redundancy. A possible
explanation is that viral spreaders assume that the group
from whence a message came knows it already and avoid
that community, as suggested in Ref. [10] for chain letters.
This self-avoiding feature may reduce the impact on infor-
mation diffusion of the social network local structure [2] in
favor of midrange to global topology properties.

In line with the studies mentioned in the introduction,
our viral marketing campaigns show also high heteroge-
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FIG. 2 (color online). Complementary cumulative distribution
of the response time 7 in the viral marketing campaigns
(circles). The solid line shows fits to a log-normal distribution
with & = 5.547 and 6% = 4.519 (black) and to an exponential
distribution (red) and a power-law distribution (blue) with exp-
onent —1.48. Inset: Scatter plot of the number of recommenda-
tions sent by each participant r; vs her response time 7 ; (dots).
The red solid line is a running average of r as a function of 7.

neity in the response time 7 at the individual level:
Participants forward the message after 7 = 1.5 days on
average, with a large standard deviation of ., = 5.5 days.
Some participants resend the invitation email as much as
Tr = 69 days after receiving it. Our data are fully consis-
tent with a log-normal distribution for the distribution of
response times P(7y). Power-law distributions or exponen-
tial distributions systematically over- and underestimate
(respectively) the frequency of large response times (see
Fig. 2). Moreover, response time does not show statistical
correlation with the number of recommendations made by
participants (see Fig. 2). Thus, the delay 75 in forwarding a
message and the number of recommendations sent r result
from seemingly independent decisions.

At the collective level, we find an extraordinary behavior
of information diffusion: If i(¢) is the average fraction (over
all cascades) of informed individuals forwarding the mes-
sage at time ¢, its dynamics follows an unexpectedly slow
pace (see Fig. 3). This is in striking contrast with tradi-
tional epidemic models [14] where the dynamics of i(f) in
the cascades is modeled by the growth equation

di . ; ;

— = ayi(t) = i(r) ~ i(0)e™, (H

dt
where ay = (R, — 1)/7 is the naive approximation to the
Malthusian rate parameter of the population. Equation (1)
is the simplest version of more complicated models such as
the Bass model of innovations diffusion [5] or the
susceptible-infected-removed (SIR) epidemic model [14]
used to model information propagation in social networks
[1,3]. Equation (1) is based on the assumption that infec-
tion, or information diffusion, happens mostly around time
Tr = T and that new infections by individuals that have
already infected others are very unlikely for 7, > 7.
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FIG. 3 (color online). Average fraction of new participants as a
function of the cascade start time in our campaigns (circles)
compared with the prediction of the Bellman-Harris model with
P(?) the log-normal distribution (black line) of Fig. 2 and with
P(t) exponential of the same mean (red). The dashed line is the
asymptotic approximation (5) of the Bellman-Harris model with
P(t) log-normal. Inset: Time evolution of the cascade average
size (circles) accurately predicted by the model for G(r) log-
normal. In red is the prediction for G(r) exponential.

Since 7 = 1.5 days, Eq. (1) implies that most infections
(new informed individuals) should happen during the first
few days. However, we observe a significant fraction of
new infections even at the month time scale as shown in
Fig. 3. Moreover, the functional decay of new infected
individuals cannot be explained by an exponential decay as
(1) predicts. Thus, traditional epidemic models fail to
predict information speed and also the functional form of
its dynamics.

To explain our results, we model them with a branching
process that considers activity heterogeneity. Given the low
email redundancy, we consider only the growth of treelike
cascades. Nevertheless, this approximation captures the
main features of the spreading dynamics on social net-
works [2,22]. Each cascade starts from a seed that initiates
propagation with a random number of recommendations
whose average is 7. Touched individuals become secondary
spreaders with probability A and propagate the message
further. Information forwarding happens after time 7, in-
dependent of r and distributed by P(7). This process is the
well known Bellman-Harris branching model [23] where
the average fraction (over all cascades) of active individu-
als at time 7 is given by

i) = 1 — G() + Ry jo ‘Wt — P, @)

where G(t) = [} P(7)d7 is the cumulative distribution
function (CDF) of P(7). Equation (2) is non-Markovian,
since the average number of new infections () at time 7
depends on the history of infections in the past 0 < 7 < 1t.
Explicit solutions of (2) do not exist for general P(7) and
Ry, but if there is a solution « of the implicit equation

R, f Y emamp(r)dr = 1, 3)
0

then the asymptotic behavior of (2) is given by [23]
RO - 1
aR} [¥ Te *"P(r)dT’

Thus, although Eq. (2) is non-Markovian, it behaves
asymptotically as the solutions of the simple Markovian
model (1) with a given by the solution of (3). This ap-
proximation for general P(¢) is exact in the case of the
exponential distribution of memoryless Poissonian statis-
tics: If P(7) = e~ 7/7* /74, the solution of (3) is & = a; and
Eq. (2) can be written in differential form as Eq. (1).

However, for Ry < 1 (i.e., « < 0), Eq. (3) has a solution
for « only if P(¢) decays fast enough, specifically, faster
than the exponential distribution in the limit # — oo. Thus,
growth models like (1) or approximations like (4) are not
valid for a large family of distributions P(f) known as
subexponential distributions, i.e., those decaying slower
than exponential when t — oco. This family includes im-
portant cases like the log-normal, power-law, or stretched
exponential distributions. In that case, the general asymp-
totic behavior of Eq. (2) is controlled instead by the tail of
the CDF distribution [24]

1
1 —

i(t) ~ Ce%, C=

“

i)~ ———[1 - GO}, )

0
which highlights the non-Markovian character of the solu-
tions of Eq. (2), since they depend on those individuals
whose response time is the longest. The distributions used
to model the large heterogeneity of human response times
(power-law [7] or log-normal [8]) are members of this class
of distributions, and Eq. (5) shows the profound impact of
large heterogeneity in response times: The very functional
form of the time dependence is changed, and the dynamics
of information does not depend on the mean value of the
response time but on the tail of the distribution, thus
drastically slowing down the propagation of information.
Figure 3 shows the striking agreement of the approxima-
tion (5) with the data obtained in our campaigns assuming
that P(7) is given by the log-normal distribution in Fig. 2.

The slowing down of information diffusion due to the
subexponential nature of human response times can ex-
plain the prevalence of some rumors, viral campaigns,
chain letters, or computer viruses as suggested in
Ref. [16]. For example, if we assume N, seeds are initially
infected and set the end of diffusion when the fraction of
infected individuals decays to i(t;) ~ 1/N,, then the
Poissonian approximation (1) gives 7, = a "InN;, while

in the log-normal case [Eq. (2)] we get 1, ~ eV bInN; “where
b is independent of R,. For large enough N, there is a huge
difference between both estimations. For example, if Ny =
10* individuals (a large but moderate value), tp = 17 days
(with Ry = 0.26) for Poissonian models while ¢, =~ 1 year
if P(7) is log-normal.

Interestingly, the large heterogeneity found in human
response time has the opposite effect above the epidemic
threshold (R, > 1) where Eq. (3) has a solution & much
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FIG. 4 (color online). Value of the inverse of the Malthusian
parameter « (in minutes) as a function of R, for Ry = 1. The
black line below is the result given by Eq. (3), where G(¢) is the
fitted log-normal distribution and the straight line in red corre-
sponds to G(z) an exponential distribution with the same 7 =
1.5 days.

bigger than « (Fig. 4). In this case the Bellman-Harris
model describes the important initial exponential growth of
the epidemic spreading, and we see that information spread
faster than expected with a being even 1 order of magni-
tude greater than «. For example, although the average
response time is of the order of days in typical email
exchange, if successful, spreading of information through
email will occur in a matter of hours. The change of
behavior above and below the tipping point stems from
the different impact on the dynamics of individuals with
small or large values of 7: While for Ry < 1 the number of
infected individuals decays in time up to a point where a
sole individual can halt or resume a viral cascade growth,
for Ry > 1 the dynamics is governed by individuals with a
small value of 75, more abundant than those with 7 =~ 75,
which speeds up diffusion.

In summary, we have shown that the large heterogeneity
in human activity controls information spreading. Its im-
pact is not merely quantitative (a mere renormalization of
information speed); rather, it changes qualitatively the dy-
namics of information diffusion at the collective level. Spe-
cifically, below the tipping point, the very concept of infor-
mation speed becomes ill defined as information pro-
gresses in logarithmic time. This effect is universal because
it does not depend on the specific details of human activity
patterns but on the subexponential character of their dis-
tribution. Since most information transmission and sharing
in social networks has limited reach, thus occurring below
the tipping point, our findings are bound to affect the way
we understand and model social phenomena like rumor
spreading, cooperation, opinion formation, cultural dynam-
ics, diffusion of innovations, etc. Actually, we have shown
that the most common and simple equation for epidemic
dynamics [the growth equation (1)] cannot be used to
model the information diffusion given the relevance of het-
erogeneity in this dynamical process. Since this equation is

usually the first building block in more complicated and
popular models (e.g., the Bass model [5], the SIR/suscep-
tible-infected-susceptible models [2,3,14], etc.), we expect
those models to suffer from the same problems found here.
Finally, since non-Poissonian (subexponential) distribu-
tions also characterize the individual rhythms and activity
patterns in other human actions [7-9,13,15], we expect a
similar influence of heterogeneity on the corresponding
dynamical collective behaviors. We hope our work will
trigger further research on the impact of that heterogeneity
in the way we model and understand human dynamics.
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