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Anomalous diffusion in crowded fluids, e.g., in the cytoplasm of living cells, is a frequent phenomenon.

So far, however, the associated stochastic process, i.e., the propagator of the random walk, has not been

uncovered. Here we show by means of fluorescence correlation spectroscopy and simulations that the

properties of crowding-induced subdiffusion are consistent with the predictions for fractional Brownian

motion or obstructed (percolationlike) diffusion, both of which have stationary increments. In contrast,

our experimental results cannot be explained by a continuous time random walk with its distinct non-

Gaussian propagator.
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Crowded fluids are a natural phenomenon in living cells
with considerable impact on intracellular chemical reac-
tions (see, e.g., [1] for a review). Indeed, the cytoplasm and
nucleoplasm of living cells are crowded with a plethora of
macromolecules, often rendering the diffusion in these
intracellular fluids anomalous [2–5]. While the interior of
cells is very complex and heterogenous, the phenomenon
of crowding-induced subdiffusion has also been observed
in more controlled in vitro approaches, for example, in
entangled actin networks [6] and concentrated protein
solutions [3,7,8]. In all of these cases, a nonlinear growth
of the mean square displacement (MSD) hrðtÞ2i � t� with
�< 1 has been observed.

Despite the frequent observation of a nonlinear growth
of the MSD in crowded media (see [9] for examples where
normal diffusion has been reported), the properties of the
associated propagator have remained elusive so far. Indeed,
one may group the propagators for subdiffusive motion
into two categories: those that are associated with station-
ary increments and those that arise from nonstationary
increments. Prominent examples of the first category are
fractional Brownian motion (FBM), for which the propa-

gator reads Pðr; tÞ � expf�Cr2=tð2��1Þ=2g=tð2��1Þ=2 [10],

and percolation with Pðr; tÞ � y expf�Cy1:65g, y ¼ r=t�=2

[11,12]. The most prominent nonstationary process is a
continuous time random walk (CTRW) with its distinct
non-Gaussian propagator [Eq. (42) in [13]]. Indeed, due to
the intrinsic aging process, a CTRW shows weak ergodic-
ity breaking; i.e., in strong contrast to FBM and obstructed
(percolationlike) diffusion, the time and ensemble aver-
ages of the MSD do not coincide for a CTRW [14,15].

Here we have utilized fluorescence correlation spectros-
copy (FCS) to elucidate the propagator underlying
crowding-induced subdiffusion. In particular, we have
quantified the anomaly � and the mean residence time
�D in the focus for apoferritin in crowded dextran solu-
tions. Comparing the obtained distributions pð�Þ and
pð�DÞ with simulation results on FBM, obstructed diffu-
sion, and CTRW, we find a good agreement with the first

two yet strong deviations from the predictions of a CTRW.
Our data hence indicate that it is a stochastic process with
stationary increments that is more appropriate for describ-
ing crowding-induced subdiffusion.
Materials and methods.—FCS curves were acquired

using a MicroTime 200 microscope (Picoquant) equipped
with a 60x=1:2 NA water immersion objective. As a fluo-
rescent probe we labeled apoferritin (Sigma) with
Alexa488 (Molecular Probes) using the manufacturer’s
protocol. After purification, the labeled apoferritin was
immersed in a crowded dextran solution (concentration:
20% by weight) using 500 kDa dextran (Sigma) as a
crowding agent. The fluorophore was excited with a pulsed
470 nm laser that did not fully illuminate the back aperture
plane; the width of the FCS focus was hence not
diffraction-limited but had a slightly larger width (r0 �
320 nm).
FCS data were fitted with a versatile expression for

subdiffusion in bulk solution [3]:

Cð�Þ ¼ 1

N½1þ ð�=�DÞ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ qð�=�DÞ�
p

: (1)

Here � denotes the anomaly degree of the diffusion, while
�D is the mean residence time of a particle in the confocal
volume [for � ¼ 1 the diffusion coefficient D is given via
�D ¼ r20=ð4DÞ with the beam waist r0]. The mean number

of particles in the confocal volume is denoted by N. The
prefactor q < 1 denotes the unavoidable elongation of the
confocal volume along the optical axis. In our case, q �
1=36. Fitting was performed with XMGRACE using the
interval 100 �s � � � 200 ms. Since the fitting range is
well above the triplet decay time of Alexa488 (<5 �s) and
as the anticipated triplet fraction also is very low, we have
not included a triplet contribution into Eq. (1).
FCS data were acquired in phosphate buffered saline

(PBS) or a crowded dextran solution by parking the laser
beam in the solution and detecting the fluorescence for a
period of 180 s. Without moving the beam or the fluid, this
acquisition was repeated 50 times to gain statistics for �
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and �D. In all measurements, the mean particle number in
the focus was 1<N < 10.

Anomalous diffusion was simulated by (i) fractional
Brownian motion, (ii) obstructed diffusion, and (iii) a
CTRW. In case (i), we used the approach outlined in
Ref. [16] and adjusted the generalized mobility, i.e., the
value of the typical spatial increment taken within one
simulation time unit, to match the experimentally observed
residence time �D while � was fixed beforehand. For (ii)
and (iii), we used a two-dimensional square lattice with
periodic boundary conditions and the blind ant algorithm.
A computationally inexpensive two-dimensional simula-
tion indeed captures the dominant contribution to the au-
tocorrelation decay in the range � < 1 s as the correlation
decay in Eq. (1) is dominated by diffusion perpendicular to
the optical axis [cf. factor q � 1=36 in Eq. (1)]. For
obstructed diffusion, we randomly placed immobile ob-
stacles on 35%–37% of the lattice sites. This obstacle
density was chosen to yield a good match between the
experimentally observed mean anomaly h�i and the one
derived from the ensemble-averaged MSD in the simula-
tions. Tracer particles were assumed to have a diffusion
constant D ¼ 1:6 �m2=s. The lattice size was 350� 350
with a lattice constant of �x ¼ 10 nm (in accordance with
the free hydrodynamic radii of dextran, � 6:5 nm [3], and
apoferritin, � 6 nm); the time increment was �t ¼
6:25 �s. For simulating a CTRW, we used the same lattice
but chose a diffusion coefficient D ¼ 62:5 �m2=s and a
time increment of �t ¼ 0:1 �s. After having taken a
diffusive step, particles were assigned a random waiting

time � ¼ 1=�1=� with 0< �< 1 a uniform random num-
ber. The distribution of waiting times hence had a power-
law tail pð�Þ � 1=�1þ�, and the ensemble-averaged mean
square displacement grew like hrðtÞ2i � t� for t > 1 �s.
Choosing waiting times � <�t resulted in a normal dif-
fusive behavior with the imposed diffusion coefficient.

To obtain FCS curves from the simulations, a Gaussian
confocal volume of width �x ¼ �y ¼ 250 nm was placed

in the center of the simulation box, and particles were
assumed to contribute to the total fluorescence proportional
to the value of the Gaussian beam profile on their lattice
site. For consistency with the experiments, we used
300 particles in all simulations, yielding a mean particle
number 1<N < 10 in the focus. To have the same statis-
tics for � and �D as in the experiment, we started 50 inde-
pendent simulations for each process (CTRW, obstructed
diffusion, and FBM), yielding 50 simulated FCS curves.
As we simulated only two-dimensional diffusion, we have
set q ¼ 0 in Eq. (1) when doing the fitting. Fitting in all
cases was performed with XMGRACE using the interval
100 �s � �D � 200 ms.

Results and discussion.—We first measured the diffu-
sion of apoferritin in buffer solution (PBS). In all cases, we
observed normal diffusion with a mean residence time
h�Di � 720 �s (Fig. 1). Apoferritin has an approximate

radius of 6 nm, yielding a diffusion coefficient of about
38 �m2=s via the Einstein-Stokes equation (assuming that
PBS has the viscosity of water, � ¼ 10�3 Pa s). This trans-
lates to a diffusion time �D ¼ r20=ð4DÞ � 675 �s, when
including the focus width r0 � 320 nm. This theoretical
estimate is in good agreement with the experimentally
found value.
In contrast to the observations in PBS, the diffusion in

crowded dextran solutions was strongly anomalous (h�i �
0:82) in agreement with previous reports [3,7]. Also, the
anomaly degree varied more strongly than for measure-
ments in PBS (Fig. 1). Moreover, we did not observe any
systematic variation of �, e.g., due to aging of the sample,
hence indicating that a CTRW may not be an adequate
description for the stochastic process monitored in the FCS
experiments. Extracting the complex shear modulus
Gð!Þ ¼ G0ð!Þ þ iG00ð!Þ from the experimental FCS
data (see [5] for details) showed that the crowded dextran
solution did not exhibit properties of glasses or cross-
linked gels [i.e., no plateau in Gð!Þ] but rather was a
viscoelastic fluid with G00 >G0. Previous work of ours
also had shown that fluorescent dextran molecules in a
fluid of nonfluorescent dextran crowders are quite mobile
(�D < 100 ms, depending on the actual crowding condi-
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FIG. 1. Representative (normalized) FCS curve for apoferritin
(a) in PBS (� ¼ 1, �D ¼ 675 �s) and (b) in a crowded dextran
solution (� ¼ 0:81, �D ¼ 97:6 ms). (c) The distribution of the
anomaly pð�Þ in PBS is very narrow with a mean h�i � 0:99.
(d) In a crowded dextran solution, a broadening of pð�Þ and a
shift of the mean (h�i � 0:82) is clearly visible.
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tions) [3]. This suggests a fluid rather than a gel-like nature
of the crowded dextran solution.

To elucidate if FBM, CTRW, or obstructed diffusion
could account for the observed distribution of anomalies,
we performed simulations on these respective stochastic
processes (see above for details). First, we inspected di-
rectly the diffusion paths of particles. As evidenced by the
ensemble-averaged MSD, all simulations reproduced a
subdiffusive motion with � ¼ 0:82 (Fig. 2). While the
value of � had been imposed as a parameter in FBM and
CTRW, the actual value of the anomaly for obstructed
diffusion is imposed indirectly via choosing the obstacle
density. As expected for obstructed diffusion below the
percolation threshold, the MSD showed a transition to-
wards normal diffusion for large times (here, t > 1 s). In
agreement with the expectation of an ergodic behavior, the
ensemble-averaged MSD and its time-averaged analogon
(using a representative trajectory) coincided within the
statistical error for obstructed diffusion and FBM. In con-
trast, for the CTRW only the ensemble-averaged MSD
yielded subdiffusion in agreement with the imposed �
value. The time-averaged MSD, however, showed normal
diffusion. This behavior is anticipated and has been re-
ported earlier as a consequence of the weak ergodicity
breaking in a CTRW [14,15].

Having verified that the simulations yielded the antici-
pated scaling of the MSD, we next inspected the variability
of the anomaly � for individual FCS simulation runs. For
each simulated FCS curve, we fitted the correlation func-

tion with Eq. (1) and extracted � and �D. For FBM and
obstructed diffusion (obstacle concentration 35%–37%),
we found fairly narrow distributions that matched well
the experimentally determined pð�Þ [Fig. 3(a)]. It is worth-
while noting that obstructed diffusion at a given concen-
tration of obstacles (e.g., 36%) with random configurations
of the obstacles yielded a more narrow distribution pð�Þ.
This indicates that a certain amount of (dynamic) varia-
bility in the obstacle configuration is necessary to describe
the experimental data. For FBM we observed a mean
anomaly h�i � 0:84 that was slightly higher than the value
imposed in the simulations (� ¼ 0:82).
In contrast to FBM and obstructed diffusion, a CTRW

with � ¼ 0:82 resulted in a very broad distribution of
anomalies [Fig. 3(b)]. Also the mean of the distribution
(h�i � 0:59) strongly deviates from the� value imposed in
the waiting time statistics. This discrepancy is not observed
in the ensemble-averaged MSD (cf. Fig. 2) and hence
appears to be a consequence of the small amount of parti-
cles that contribute to the FCS curve at each instant of time.
We also had confirmed earlier that Eq. (1) indeed can be
used to fit Cð�Þ when particles move according to the
fractional Fokker-Planck equation [3], i.e., the mean-field
description of a CTRW. We had found that the use of
Eq. (1) leads to a slight underestimation of the anomaly
(�Eq:ð1Þ ¼ 1:1 � �CTRW � 0:12) yielding �Eq:ð1Þ ¼ 0:78 for

the imposed value �CTRW ¼ 0:82. Yet, the observed value
h�i � 0:59 clearly is much smaller, and the anomaly dis-
tribution for a CTRW (as deduced from the simulated FCS

10-4 10-3 10-2 10-1

t [s]

10-3

10-2

10-1

100

101 〈r(t)〉 [µm2]

FIG. 2. Mean square displacement hrðtÞ2i for obstructed diffu-
sion (36% obstacle concentration), FBM, and CTRW (from top).
Open symbols denote the ensemble-averaged MSD, and cross-
like symbols denote the time-averaged MSD for a representative
trajectory. While both approaches coincide for FBM and ob-
structed diffusion, the curves differ for the CTRW due to weak
ergodicity breaking. For better visibility, MSD curves for FBM
and obstructed diffusion have been shifted upwards (factor 50
and 250, respectively). Full lines scale as hrðtÞ2i � t0:82; the
dashed line is linear in time.
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FIG. 3. (a) Distribution of the anomaly pð�Þ obtained for
obstructed diffusion with 35%–37% obstacle density (black
line histogram). The width of the distribution agrees well with
the experimental data (gray-shaded histogram; cf. Fig. 1). Data
for FBM are shown as filled squares connected by full lines.
While here the width of the distribution is consistent with the
experimental data, a slight shift in the mean anomaly (h�i �
0:84) with respect to the value imposed in the simulation (� ¼
0:82) is observed. (b) The distribution obtained for a CTRW
(black line histogram) yielded an average anomaly (h�i � 0:59)
that was much lower than the value imposed in the waiting time
statistics (� ¼ 0:82). Moreover, the CTRW-derived distribution
is much broader than the experimental distribution (gray-shaded
histogram).
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curves) is therefore inconsistent with the experimental
data [17].

As a second quantity, we inspected the distribution of
residence times in the focus pð�DÞ that encodes the gener-
alized mobility of the particles (i.e., the analogue to the
diffusion coefficient with units �m2=s�). Similar to our
results on the distribution of anomalies, we find a good
agreement of the experimental data and the simulations of
FBM and obstructed diffusion [Fig. 4(a)]. In contrast, a
CTRW produced larger residence times with a broader
distribution than the experimentally determined pð�DÞ
[Fig. 4(b)]. Thus, also the distribution of residence times
supports the notion that crowding-induced subdiffusion is
more consistent with FBM and obstructed diffusion than
with a CTRW.

Having ruled out CTRW as a possible explanation for
our experimental observations, one may ask whether it is
also possible to discriminate between FBM and obstructed
diffusion. We speculate that one may address this point by
monitoring the variation of � as the concentration of the
crowding agent is varied. The resulting experimental data
can subsequently be checked for consistency with
Monte Carlo simulations on FBM or obstructed diffusion
with varying concentrations of obstacles [18]. Given that
obstructed diffusion relies on (almost) immobile obstacles
while our crowded solution rather is a fluid (i.e., obstacles
move quite rapidly), it is tempting to speculate that these
additional experiments and simulation will reveal that
obstructed diffusion does not represent the most ade-
quate stochastic process to describe crowding-induced
subdiffusion.

In conclusion, crowding-induced subdiffusion is most
consistent with a stochastic process that has stationary

increments. By using a CTRW, a similar (ensemble-
averaged) MSD is observed, yet due to the weak ergodicity
breaking strong fluctuations in the anomaly and general-
ized mobility of single trajectories are expected [14,15]
that are inconsistent with the experimentally observed
distributions for pð�Þ and pð�DÞ. It will be interesting to
use single-particle tracking on crowded media to obtain a
more direct discrimination among CTRW, FBM, and ob-
structed diffusion since time- and ensemble-averaged
MSD can be calculated directly. In this context, also
finite-size effects and restricted measurement times may
be included that affect FBM [19] and CTRW [14].
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FIG. 4. (a) The distribution pð�DÞ of mean residence times in
the confocal volume obtained for obstructed diffusion with
35%–37% obstacle density (black line histogram) is in very
good agreement with the experimentally determined distribution
(gray-shaded histogram). The distribution for FBM (filled
squares connected by full lines) also agrees well with the
experimental data. (b) The distribution of residence times ob-
tained for a CTRW with � ¼ 0:82 (black line histogram) is
shifted towards larger values and appears quite broad as com-
pared to the experimental data (gray-shaded histogram).
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