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We consider the equilibrium stress-strain behavior of polydomain liquid crystal elastomers (PLCEs).

We show that there is a fundamental difference between PLCEs cross-linked in the high temperature

isotropic and low temperature aligned states. PLCEs cross-linked in the isotropic state then cooled to an

aligned state will exhibit extremely soft elasticity (confirmed by recent experiments) and ordered director

patterns characteristic of textured deformations. PLCEs cross-linked in the aligned state will be

mechanically much harder and characterized by disclination textures.
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Liquid crystal elastomers are rubbery materials that
possess liquid crystal order [1]. Their large spontaneous
elongations at the symmetry-breaking isotropic-nematic
transition have long made them ideal candidates for show-
ing soft (zero energy) elastic modes [2,3] in the manner
proposed by Golubovic and Lubensky [4]. Monodomain
samples show qualitatively soft elasticity over a large range
of deformations [5,6]. However, monodomains never show
perfectly soft behavior because, to achieve their macro-
scopic alignment of the director, they require the imprint-
ing of a direction on the network, breaking the isotropy of
the high temperature state. A microscopic region extracted
from a polydomain cross-linked in either the nematic or the
isotropic state would have fairly soft elastic modes. As
anticipated by Golubovic and Lubensky, in the isotropic
cross-linking case these modes will be almost perfectly
soft, while in the nematic cross-linking case they will only
be qualitatively soft like those in monodomains. However,
the macroscopic softness of the polydomain sample is not
guaranteed because the soft modes of neighboring domains
may not be elastically compatible, although there are ex-
perimental suggestions of softness [7]. Using textured
deformations introduced by DeSimone and Dolzmann [8]
we show that polydomains cross-linked in the isotropic
state retain their extreme softness macroscopically, while
polydomains cross-linked in the nematic state will not.
This distinction has been confirmed by recent experiments
[9].

Polydomains cross-linked in the isotropic state can only
deviate from perfect Golubovic-Lubensky soft elasticity
because local fluctuations in, say, cross-link orientation,
compromise the isotropy of the cross-linking state.
Following [10] we model these fluctuations using a random
field which drives the formation of the polydomain state
and limits the softness of the macroscopic response.

The distinctive behavior of monodomain samples has
been well understood using a neoclassical model of
Gaussian distributed chains [1,11]. The chain conforma-

tions are biased by the liquid crystal order so that the
second moment of the conformation distribution of a free

chain is hRiRji / ‘ ¼ r�1=3ð�þ ðr� 1Þn̂ n̂ Þ, where R is

the polymer span vector, � is the identity matrix, n̂ is the

nematic director, and r is the anisotropy of the polymer
conformation distribution which measures the coupling
between the polymers and the director. If an elastomer is

cross-linked in a state with scaled step-length tensor ‘0 ¼
r�1=3ð�þ ðr� 1Þn̂0n̂0Þ and then subject to a deformation

gradient � and a change in the step-length tensor to ‘, the

free energy density is

F¼ 1
2�Trð� �‘0 ��T �‘�1þ�� � ð�� n̂0n̂0Þ ��T � n̂n̂Þ:

(1)

The constant shear modulus� sets the scale of this energy,
and ‘ may differ from ‘0 because the strength of the

nematic order has changed, leading to a change in r, or
because the nematic director has rotated to n̂. The first term
in this energy is the ideal term that allows perfectly soft

elasticity—deformations of the form � ¼ ‘1=2 � ‘0�1=2 do

not cost energy—and the second, proportional to the coef-
ficient of nonideality, �, causes these deformations to cost
some energy by favoring alignment of the director along
n̂0. This form, first derived microscopically [12] is quite
generic [13] and describes the elasticity of monodomain
elastomers very well [5,6].
The individual domains (regions of homogenous ne-

matic director n̂) in polydomain elastomers are very
much larger than any of the microscopic length scales
[14], so we model nematic polydomains by assuming that
each domain has the same free energy as a monodomain.
Therefore we can easily write down the energy functions
for polydomain elastomers by simply allowing the quanti-
ties n̂, n̂0, and � to become spatially varying fields. We

distinguish between four types of polydomain, ideal and
nonideal samples with nematic and isotopic cross-linking
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states, giving us four energy functions,

F¼

8>>>><
>>>>:

1
2�Trð� ��T � ‘�1Þ iI
1
2�Trð� ��T � ‘�1 þ�r1=3�ð�� n̂0n̂0Þ�Tn̂ n̂Þ nI
1
2�Trð� � ‘

0
��T � ‘�1Þ iN

1
2�Trð� � ‘

0
��T � ‘�1 þ��ð�� n̂0n̂0Þ�Tn̂ n̂Þ nN

(2)

where i and n denote ideal and nonideal, I and N denote
isotropic and nematic cross-linking and, in the isotropic
cross-linking case the step-length tensor at cross-linking,
‘0, is simply identity. In each case � is the deformation

gradient from the cross-linking state.
In the nematic cross-linking case � ¼ � minimizes the

energy, and the n̂0ðxÞ field is literally the nematic director
field at cross-linking. The isotropic cross-linking energies
are very different. Their local energy is minimized by a

spontaneous elongation by a factor of r1=3, which would be
the shape change associated with the phase change from
the isotropic cross-linking state to a monodomain nematic
state. Monodomains can be synthesized with this factor
lying anywhere between 5% and 400% [15], implying
values for r between 1.1 and 60. In the ideal case this
elongation can be in any direction. Since the cross-linking
state is truly isotropic (unlike even isotropic genesis mono-
domains, which have their isotropy broken by an imposed
stress at cross-linking) we expect the ideal model, which
has no n̂0 dependence, to be very good. However, there are
extremely weak mechanisms that can introduce a locally
preferred direction into the apparently isotropic state, for
example, the cross-linking molecules are rod shaped and,
in any given region, because there is a finite number of
rods, there will be a slight average orientation [14,16]. This
permits the inclusion of a very small nonideal term in even
the isotropic cross-linking case. However, it will certainly
be very much weaker than in monodomain networks,
which have a preferred direction imprinted on them, or
nematic cross-linking polydomains, which can distinguish
the nematic director at cross-linking so that, for example,
the cross-linking rods can all align in this direction.

We wish to study the macroscopic elasticity of large
blocks of polydomain elastomers, which is to say we want
to find the energy of a macroscopic block occupying a
region � after imposing a homogenous deformation gra-
dient � to the surface �� and allowing the internal defor-

mations � ¼ ry and director patterns n̂ðxÞ to relax to their
optimal configurations. We define this relaxed energy func-
tion as

Frð�; n̂0ðxÞÞ ¼ min
y¼�:x

on ��

min
n̂ðxÞ

1

Vol�

Z
�
Fðry;nðxÞ;n0ðxÞÞdx:

The four different types of polydomains correspond to the
different choices of F in Eq. (2). All deformations in
elastomers occur at constant volume, so we also require

that detry ¼ 1. We will adopt the convention that �ðxÞ ¼
ry is the local deformation and � ¼ h�i is the macro-

scopic deformation.
The energy function for ideal isotropic genesis (iI)

polydomains has no spatial variation, indeed it is exactly
the same energy that is used to model ideal nematic mono-
domains. It is locally minimized by any deformation gra-

dient of the form � ¼ ry ¼ ‘1=2, a uniaxial extension

along n̂, which can point in any direction. A macroscopi-
cally homogenous deformation will be relaxed if it can be
made out of a pattern of deformations that are all uniaxial

extensions by r1=3 but which average to the macroscopic
deformation. Trivially, if every point in the material under-

goes the same uniaxial extension by r1=3 this condition is
satisfied, and a relaxed aligned monodomain is formed
with the director along the axis of extension. This means

that stretching the cross-linking state by r1=3 in any direc-
tion yields a relaxed low energy state, and there are soft
deformations that map between these states. Much less
obviously, DeSimone and Dolzmann showed that there
are also very special deformation patterns (textured defor-

mations—see Fig. 1) that allow a macroscopic � ¼
diagð�; 1= ffiffiffiffi

�
p

; 1=
ffiffiffiffi
�

p Þ, imposed in any direction, to be built

entirely out of uniaxial stretches of r1=3 for all � � r1=3 and

hence imposed softly [8]. For � � r1=3 the energy is not
soft and is minimized by the local deformation simply
following the macroscopic deformation. This remarkable
result means that an ideal isotropic genesis polydomain

FIG. 1. Upper: Uniaxial stretches applied in different direc-
tions in different regions generally result in fracture. Middle: If
the axes are bisected by the interfacial plane, body rotations can
restore material continuity. Many repetitions of this type of
structure make a textured deformation. Bottom: A familiar
example of a textured deformation—the stripe domain seen in
nematic monodomains [6]. A nematic monodomain stretched
perpendicular to its director adopts a laminate structure with all
laminates being stretched but also having alternating director
rotation and shear which make the deformations soft. The
sample has no macroscopic shear but has sheared (and hence
deformed softly) at every point.
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that is stretched uniaxially should deform at zero stress

(F ¼ 3
2�) for � � r1=3 and then behave as a simple

Hookean solid ðF ¼ 1
2�r1=3ð�2=rþ 2=�ÞÞ for � � r1=3,

�ð�Þ ¼ dF

d�
¼

�
0 � � r1=3

�r1=3ð�=r� 1=�2Þ � � r1=3:
(3)

This macroscopic soft elasticity has a very different form
to that seen in monodomains where the soft modes have a
two dimensional form ð� ¼ diagð�; 1; 1=�ÞÞ and deforma-

tions are soft up to � ¼ ffiffiffi
r

p
for stretching perpendicular to

the director [6], but never soft if the stretch is parallel to the
director. All the domains in a relaxed isotropic genesis
polydomain are individually able to stretch in this soft
two-dimensional way, without fracturing the material, until
complete alignment of the sample is reached. This is
possible because the transition to the nematic happens after
cross-linking, restricting the choice of domain patterns to
those with this property.

We compare the above ideal stress-strain relation (3)
with some recent observations [9] of an isotropic genesis
polydomain rubber in Fig. 2. The observations and the
predictions agree very well, clearly confirming that iso-
tropic genesis polydomains exhibit very soft elasticity.
However, the real elastomer does not quite deform at
zero stress motivating the consideration of nonideal theo-
ries. Since the cross-linking state is almost isotropic, non-
ideality must be very small so the key features of the ideal
model will persist. Extension will not occur at zero stress,

but extensions up to � � r1=3 will occur at energies
Oð�Þ � 1. The deformation patterns and director patterns
must still be very close to those in the ideal case, so the
observed patterns will still be characterized as textured
deformations driven by elastic compatibility—typically
oscillations between regions of constant deformation sepa-
rated by sharp boundaries [6,8,17]—not disclination tex-
tures which are not elastically compatible [18], although
the choice of microstructure will change from point to
point in the elastomer.

A (Taylor-like) upper bound on the relaxed nonideal
isotropic genesis polydomain energy can be found by

taking a test strain field from the ideal case and calculating
its energy in the nonideal case. Since the relaxed energy
function is a minimum over all strain fields, evaluating the
energy at one example of a strain field is an upper bound on
the energy. We take strain fields that do not correlate with
the local preferred direction, so the bound can be visual-
ized as finding the energy of ideally soft textured deforma-
tions (e.g., the bottom right diagram in Fig. 1, although the
actual textures required are more complicated than these
simple laminates [8]) in the presence of a randomly dis-
tributed preferred director n̂0. The textured deformations
in the ideal case are composed of multiple uniaxial
stretches of the same magnitude. If a point in the nonideal
elastomer undergoes a (local) uniaxial extension of mag-
nitude � from the cross-linking state, at an angle � to n̂0,
then, after minimizing over n̂ (by taking n̂ along the axis
of �) the energy of the deformation [Eq. (2) nI] is

F ¼ 1

2
�r1=3

�
2

�
þ

�
1

r
þ �

�
�2 � ��2cos2�

�
: (4)

DeSimone and Dolzmann [8], showed that any uniaxial
macroscopic elongation � � � can be realized by a tex-
tured pattern of deformations which are all uniaxial elon-
gations by �. Taking any such pattern, its energy averaged
across the whole material will simply be the above expres-
sion with cosð�Þ replaced by its average, 1=3. This average
is independent of the relative length scales of the variation
in n̂0 and �. We expect that in practice the material

achieves a lower energy than this upper bound by correlat-
ing the stretch axes and preferred directions. Minimizing

this energy with respect to � gives a minimum of F ¼
3
2�ð1þ 2�r=3Þ1=3, at an extension of �3 ¼ r=ð1þ
2�r=3Þ. The DeSimone and Dolzmann result therefore
lets us place a bound on the energy of imposing a macro-
scopic stretch by � as

2Frð�Þ
�

�
� 3�1þ 2�r

3

�
1=3

�3 � r=ð1þ 2�r=3Þ
r1=3

�
2
� þ

�
1
r þ 2�

3

�
�2

�
�3 � r=ð1þ 2�r=3Þ:

We find a Sachs lower bound on the energy by assuming
each domain is subject to the same stress. This approach
does not require that the deformation field be compatible,
so it is a lower bound on the energy. Therefore, at zero
stress every domain undergoes its preferred spontaneous
deformation—a uniaxial stretch along its preferred direc-
tor. Since the sample is macroscopically isotropic, this
leads to no macroscopic deformation, but the energy den-
sity is minimized at every point as F ¼ 3�=2. Computing
the lower bound at finite extension can be done simply
numerically by minimizing Fð�; n̂; n̂0Þ � ��xx over all �

and n̂ at fixed � for a given domain (n̂0) to find the optimal
deformation �m and director orientation n̂m of the domain

at the stress �. The energy and extension of the whole
sample are then found by averaging Fð�m; n̂m; n̂0Þ and

FIG. 2 (color online). Nominal stress (�) vs strain (�) for a
real isotropic genesis polydomain elastomer (circles) compared
with the ideal stress (lower line) and a nonideal estimate of the
stress (upper line) provided by the derivative of the Sachs bound
on the energy. The fitting parameters are r ¼ 1:65, � ¼ 33 000
and, for the nonideal curve, � ¼ 0:01.
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ð�mÞxx over all domain orientations. A simpler analytic

lower bound is provided by the exact ideal relaxed energy
[above Eq. (3)] since the extra nonideal term is always
positive.

The bounds on the energy are shown in Fig. 3. They
require that the elastomer can be stretched by �3 ¼ r=ð1þ
2�r=3Þ � r at a maximum energetic cost of ��r=3. Since
F� �ð�� 1Þ deformations up to this point must occur at

stresses �� ��r=3ðr1=3 � 1Þ. These are proportional to
�, so these extensions will take place at very low stress,
and in this regime the elastomer will undergo textured
deformations. At strains higher than �3 ¼ r=ð1þ 2�r=3Þ
the stress will rise rapidly in the sameway as the ideal case,
and the director will be uniform. The derivative of the
Sachs lower energy bound provides an estimate of the
stress-strain curve that is also compared with a real elas-
tomer in Fig. 2. The fit is good, although the soft stress-
plateau is flatter in the data. Although derivatives of energy
bounds provide estimates of the stress, they are not stress
bounds, which will be discussed in a forthcoming
publication.

We have established three striking behaviors in isotropic
genesis polydomains: domain structures driven by me-
chanical compatibility, extremely low nonideality, and
macroscopic supersoft elasticity. We do not expect nematic
genesis polydomains to exhibit any of these three behav-
iors. First, they are cross-linked in the nematic state, so
their domain structure will be that of a nematic liquid,
namely, a disclination texture. Second, their cross-linking
state is not at all isotropic—it can distinguish the direction
of the nematic director n̂0 so nonideality will probably be
similar to that found in monodomains, in which �� 0:1.
Either of these factors would be enough to destroy the third
behavior—macroscopic supersoftness. This is clear in the
case of elevated values of � since no deformations can take
place on energy scales below ��. However, even if �were
zero, we would not expect macroscopic soft behavior

because the deformation �ðxÞ ¼ ‘0
�1=2ðxÞ will not be

mechanically compatible, so the material does not have a
global isotropic reference state to generate softness. Recent

results confirm that nematic genesis polydomains do not
show any soft stress plateau at all [9]. If a nematic genesis
polydomain is heated to the ‘‘isotropic,’’ it will be unable
to undergo the energy minimizing contraction ‘0

�1=2

everywhere, so the material will be internally stressed.
This may well be visible between cross-polars and lead
to elevated nematic-isotropic transition temperatures.
Finally, we note that our conclusions about isotropic

genesis elastomers probably generalize to other types of
liquid crystal order, including SmA and SmC, provided the
cross-linking occurs in the fully isotropic state since the
spontaneous deformations associated with the isotropic-
Sm transition are very similar to those associated with
the isotropic-nematic transition. We also expect our meth-
ods to work and our conclusions to apply to nonideal
isotropic genesis models with any other form of nonideal-
ity, relying only on the nonideal term being small and
introducing a preferred direction.
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FIG. 3 (color online). Bounds on the free energy density of an
isotropic genesis polydomain as a function of strain, plotted in
units of �=2 with r ¼ 1:65 and � ¼ 0:01. Upper curve: Upper
bound from a test strain field. Middle curve: Sachs lower bound.
Lower curve: Ideal result, lower bound. The permissible region
between the bounds is shaded gray.
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