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Using synchrotron x-ray and neutron diffraction, we disentangle spin-lattice order in highly frustrated

ZnCr2O4 where magnetic chromium ions occupy the vertices of regular tetrahedra. Upon cooling below

12.5 K the quandary of antialigning spins surrounding the triangular faces of tetrahedra is resolved by

establishing weak interactions on each triangle through an intricate lattice distortion. However, the

resulting spin order is not simply a Néel state on strong bonds, but rather a complex coplanar spin

structure, indicating that antisymmetric and/or further neighbor exchange interactions also play a role as

ZnCr2O4 resolves conflicting magnetic interactions.

DOI: 10.1103/PhysRevLett.103.037201 PACS numbers: 75.25.+z, 61.05.cp, 61.05.fm, 75.50.Ee

While tetrahedral atomic clusters are a natural conse-
quence of close packing, they are particularly inconvenient
for antiferromagnetically interacting spins. This is because
no spin configuration can simultaneously satisfy all six
antiferromagnetic interactions among spins on the vertices
of a tetrahedron [1–5]. The consequence of such ‘‘geomet-
rical frustration’’ is deep suppression of magnetic order
and a range of temperatures where spins remain fluctuating
despite interactions that far exceed thermal energies [6,7].
Indeed for spins on a lattice of corner-sharing tetrahedra, it
appears there is no conventional order in the quantum limit
(S ¼ 1=2, T ¼ 0) [5]. Because they entail higher energy
spin configurations, geometrically frustrating lattices typi-
cally do not survive in the low temperature limit. Instead, a
compromise between spin and lattice energy is reached
through a first-order phase transition that freezes the spin
liquid and distorts the lattice [8–14]. Such phase transitions
challenge conventional theories of magnetism because
they involve strongly correlated spins and the collapse of
the rigid lattice approximation [15–17].

A case in point is ZnCr2O4, which is arguably the most
frustrated system so far. At room temperature, it has a
cubic Fd�3m crystal structure where Cr3þ (S ¼ 3=2) ions
form a network of corner-sharing tetrahedra [9]. The
Curie-Weiss temperature is�390 K indicating strong anti-
ferromagnetic frustration, yet chromium spins remain in a
cooperative paramagnetic phase down to TN ¼ 12:5 K
[6,9]. There, a first-order phase transition from a cubic
paramagnet to a tetragonal antiferromagnet signals the
end of distinct spin and lattice degrees of freedom.
Tetragonal strain energy alone does not account for the
difference between magnetic energy gain and overall latent
heat, and this was a first indication of a more comprehen-
sive rearrangement of the lattice [9]. Subsequently,

ð12 1
2

1
2Þc-type superlattice reflections were detected by

x rays [see Fig. 1(a)] [18]. This indicates that below TN

the tetragonal lattice has I �4m2 symmetry and a
ffiffiffi
2

p �ffiffiffi
2

p � 2 chemical unit cell [19]. Theoretical efforts to
understand the nature of the phase transition have fo-
cused on magnetoelastic couplings that involve symmetric
isotropic nearest neighbor (NN) exchange interactions
[15–17].
Here we report a combined synchrotron x-ray and mag-

netic neutron diffraction study to determine the low T spin-
lattice order in ZnCr2O4. The principal findings are as
follows. (1) The I �4m2 tetragonal crystal structure features
a nonuniform pattern of exchange interactions in which
tetrahedra have either two strong and four weak bonds or
four strong and two weak bonds. Considering strong bonds
only, the lattice is reorganized into four disjoint sublattices
that no longer frustrate nearest neighbor isotropic ex-
change interactions. (2) Every tetrahedron has two pairs
of antiparallel spins, forming a noncollinear structure with
spins in the tetragonal basal plane. However, the antiferro-
magnetic spin pairs do not completely match the pattern of
the strong NN bonds, indicating that a theoretical account
of the phase transition will require going beyond nearest
neighbor isotropic exchange and magnetoelasticity.
A 20 mg single crystal and a 30 g powder sample of

ZnCr2O4 were used for the synchrotron x-ray and powder
neutron diffraction experiments, respectively. Most x-ray
measurements including the superlattice reflections shown
in Fig. 1 were carried out at the 33BM-C beam line at the
Advanced Photon Source of Argonne National Laboratory,
while some integer reflections were rechecked to confirm
the symmetry of the tetragonal crystal structure at the
Pohang Accelerator Laboratory. The neutron powder dif-
fraction measurements were performed at the BT1 neutron
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diffractometer at the National Institute of Standards and
Technology Center for Neutron Research.

To determine the tetragonal structure in detail, we mea-
sured the x-ray integrated intensity of �140 different
ð12 1

2
1
2Þc-type superlattice reflections through rocking

scans. Fitting the data within I �4m2, we found sensitivity
to Cr positions but not Zn and O positions, so changes in
the latter positions were ignored in the analysis. This is
consistent with magnetoelastically driven displacements
dri of the magnetic Cr ions. At low T, these Cr ions occupy
six crystallographically distinct sites: four 8i sites and two
16j sites [see Table I and Fig. 2(a)]. Fourteen parameters
are needed to describe the displacements (dri ¼
½dxi; dyi; dzi�) of the six Cr sites. However, we did not
detect Bragg peaks with indexes such as ð4nþ 2; 0; 0Þc and
ð2nþ 1; 0; 0Þc, which indicates that dr4 ¼ �dr1, dr3 ¼
�dr2, and dr6 ¼ �dr5. This reduces the number of inde-
pendent parameters to seven. An excellent fit of the main
and superlattice peak intensities (green and red symbols in
Fig. 1(b), respectively) is obtained within I �4m2 with the
displacements listed in Table I and illustrated as black
arrows in Fig. 2(c).

Recall that in the cubic phase each tetrahedron contains
four Cr3þ ions with six equivalent bonds that lead to
geometrical frustration. In the tetragonal phase, however,
the displacements distinguish Cr3þ pairs, and lead to 19
different bond lengths, varying from 2.9228 Å (CrIV-CrIV

bonding in the ab plane) to 2.9649 Å (CrI-CrI bonding in
the ab plane) [see Fig. 2(d)]. Two aspects of the tetragonal
structure should be noted. (1) Each tetrahedron has either
two strong and four weak bonds (type I) or four strong and
twoweak bonds (type II) or one strong and five weak bonds
(type III). This breaks the frustrated isosceles triangular
motif of the tetrahedra. (2) Considering strong bonds only,
the entire pyrochlore lattice is divided into four different
sublattices connected by weak bonds only. Figure 2(b)
shows that CrI and CrII sites form four-legged buckled
squares while CrV sites form separate buckled octa-
gons—both finite sized spin clusters. CrIII, CrIV, and CrVI
sites, on the other hand, form chains of buckled squares
along cubic [110] and ½1�10� directions. None of these
structures feature a triangular motif so the lattice distortion
evidently accomplishes the objective of relieving frustra-
tion when only the strong bonds are considered.
Let us now determine the spin structure enabled by the

lattice distortion. Previous unpolarized powder and single
crystal neutron diffraction measurements [20,21] show
long-range magnetic order with two characteristic wave
vectors, ð12 1

2 0Þc and ð1 0 1
2Þc. Other powder samples ex-

hibited ð12 1
2

1
2Þc and ð1 0 0Þc reflections as well, but the

intensity of such peaks varied from sample to sample [21].
Additional work is required to determine whether those
reflections are intrinsic or result from strain and/or imper-
fection. Here, we focus on the magnetic structure of

TABLE I. The Cr positions in the tetragonal phase determined from Rietveld refinement of x-ray single crystal diffraction data
shown in Fig. 1(b). Displacements of the Cr ions from cubic positions are denoted by dr ¼ ½dx; dy; dz� in direct lattice coordinates.

x y z dx (10�4) dy (10�4) dz (10�4)

CrI (8i) 0:125þ dx 0 0:1875þ dz 8.945 66(202) 0 13.7973(385)

CrII (8i) 0:375þ dx 0 0:1875þ dz 6.355 47(168) 0 �3:351 79ð70Þ
CrIII (8i) 0:375þ dx 0 0:6875þ dz �6:355 47ð168Þ 0 3.351 79(70)

CrIV (8i) 0:125þ dx 0 0:6875þ dz �8:945 66ð202Þ 0 �13:7973ð385Þ
CrV (16j) 0:375þ dx 0:25þ dy 0:4375þ dz 5.479 96(127) 5.412 82(133) 2.252 74(56)

CrVI (16j) 0:875þ dx 0:75þ dy 0:4375þ dz �5:479 96ð127Þ �5:412 82ð133Þ �2:252 74ð56Þ
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FIG. 1 (color online). (a) Temperature dependence of the peak intensity of the superlattice Bragg reflection at ð7:5; 1:5; 1:5Þc. (We
note that error bars in this Letter represent one sigma error.) Superlattice peaks appear below the cubic-to-tetragonal phase transition at
TN ¼ 12:5 K. (b) Measured (y axis) and calculated (x axis) values for the absolute nuclear structure factors of 44 main (green symbols)
and �140 nonequivalent superlattice (red symbols) Bragg reflections on a logarithmic scale. The data were taken at 4 K. The inset
shows the superlattice data on a linear scale.
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samples with only two magnetic wave vectors: ð12 1
2 0Þc

and ð1 0 1
2Þc. Single crystal polarized neutron diffraction

measurements provided the important constraint that the
ordered moment is confined to the tetragonal basal plane
[21]. With these preliminaries noted, we determined the
full magnetic structure through Rietveld refinement of
neutron powder diffraction data. In the tetragonal (I �4m2)
notation, the wave vectors, ð12 1

2 0Þc and ð1 0 1
2Þc, are

equivalent to a single wave vector, km ¼ ð1 0 0Þt.
According to group representation analysis [22], the mag-
netic moment at location dj in unit cell R is written as

SðR;djÞ ¼
P

iCi;jc i;jðdjÞ expðikm �RÞ, where c i;j is the

basis vector of the irreducible representation of the km
subgroup of I �4m2. For simplicity, we assume that all spins
have equal magnitude. This implies that coefficients Ci;j

only take on values �1, 0, or 1. There are 8 (16) repre-
sentations for the 8i (16j) site that describe structures with
spins in the basal plane. In total, there are 4ð38Þ � 2ð316Þ ’
2:26� 1012 coplanar magnetic structures that can be gen-
erated by a linear combination of these representations for
four 8i and two 16j Cr3þ sites in ZnCr2O4. When we
impose plausible simplifying constraints of equal spin
magnitudes and zero net moment on each tetrahedron,
the number of possible structures is reduced to ’ 3:5�
104. When additional constraints are imposed from experi-
mental observations, such as the absence of magnetic
reflections at ð0 0 1

2Þc ¼ ð0 0 1Þt and the intensity ratio

Iðð1 1 1ÞtÞ=Iðð1 0 2ÞtÞ� 1 [see Fig. 3(a)], the number is
further reduced to 200. Comparing these 200 configura-
tions to the neutron powder diffraction data, we found 32

configurations that reproduce the same fit shown as the
solid line in Fig. 3(a).
A common feature of these 32 configurations is that the

magnetic moments of hMi ¼ 2:03ð2Þ�B=Cr
3þ are along

½1 1 0�c directions and every tetrahedron has two pairs of
antiparallel spins [see Fig. 3(b)]. Furthermore, the noncol-
linear magnetic structure is the orthogonal superposition of
two collinear structures with k1 ¼ ð12 1

2 0Þc and k2 ¼
ð1 0 1

2Þc. In the k1 structure, there are either three tetrahe-

dra with out-of-plane strong bonds with antiferromagnetic
alignments satisfied [yellow squares in Fig. 3(c)] and two
tetrahedra with basal plane strong bonds satisfied [yellow
crosses in Fig. 3(c)] (type 1) or vice versa (type 10). A k2
structure [type 2 in Fig. 3(d)] has four tetrahedra with
satisfied out-of-plane bonds and one tetrahedron with sat-
isfied basal plane bonds that matches the strong bond
pattern of the blue cell. The reverse configuration
(type 20) matches the strong bond pattern of the red cell.
All 32 configurations involve a combination of these ele-
ments. Note that in the spin structure [Fig. 3(b)] the pattern
of the antiferromagnetic pairs does not exactly match the
pattern of the strong NN bonds. A single tetrahedron favors
a collinear or orthogonal spin structure of two pairs of
antiparallel spins if it is made of four strong and two
weak bonds or two strong and four weak bonds.
However, it is impossible to construct such a magnetic
structure with the observed IP symmetry [23] while sat-
isfying the above-mentioned constraints.
In summary, using single crystal synchrotron x-ray scat-

tering we have determined the tetragonal crystal structure

FIG. 2 (color online). (a) a-b projection of the Cr sites in ZnCr2O4. Spheres in different colors represent different Cr sites in the
tetragonal phase: CrI (red), CrII (violet), CrIII (dark blue), CrIV (green), CrV (orange), and CrVI (light blue). The yellow bar and the grey
line between Cr ions are short (strong) and long (weak) bonds, respectively. The red and blue shaded squares are the cubic unit cells
that have different pattern of distortions as shown in Fig. 2(c), expanding the tetragonal unit cell by

ffiffiffi
2

p � ffiffiffi
2

p � 2 compared to the
cubic unit cell. (b) Decoupled sublattices that emerge when only the strong bonds are considered. (c) Detail of different patterns of
distortion in the red and blue cells of a unit cell. Black arrows indicate Cr distortions in the tetragonal phase. The magnitudes of the
distortions are listed in Table I. (d) Distorted tetrahedra in the tetragonal phase. The numbers indicate distances in Å between Cr ions.
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of ZnCr2O4 and we have identified a coplanar spin struc-
ture that accounts for the magnetic neutron powder dif-
fraction pattern. Nonsatisfied short bond interactions in this
structure indicate that isotropic nearest neighbor magne-
toelastic interactions alone cannot account for the observed
spin-lattice structure. Our experiment therefore calls for a
theory of magnetoelastic effects in geometrically frustrated
spinel antiferromagnets that includes consideration of
Dzyaloshinsky-Moriya [24] and further nearest neighbor
exchange interactions.
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FIG. 3 (color online). (a) Neutron powder diffraction pattern
measured at 2 K as a function of wave vector Q. Symbols
indicate observed intensities, and the line is the calculated
intensity based on the tetragonal lattice structure and the spin
structure indicated in (b). The reflection indexes in the tetragonal
notation written in red and in blue belong to k1 ¼ ð12 1

2 0Þc ¼
ð1 0 0Þt and k2 ¼ ð1 0 1

2Þc ¼ ð1 1 1Þt, respectively. The black

arrows represent positions of three ð0 0 1
2Þc ¼ ð0 0 1Þt-type re-

flections, showing the absence of such magnetic scattering.
(b) One of 32 coplanar noncollinear spin configurations that
give the same best fit to the data with the ordered moment per
each Cr3þ ion. Thick yellow (thin grey) bars represent strong
(weak) bonds. When the spin configurations are decomposed
into a and b components, one component forms a collinear spin
structure with k1 ¼ ð12 1

2 0Þc while the other forms a collinear

spin structure with k2 ¼ ð1 0 1
2Þc. Two patterns of antiparallel

spins formed for (c) k1 and (d) k2. Yellow lines in (c) and (d)
simply connect antiparallel spin pairs.
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