
Persistent Current in Small Superconducting Rings

Georg Schwiete1 and Yuval Oreg1,2

1Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
2Department of Applied Physics, Stanford University, Stanford, California 94305, USA

(Received 3 April 2008; published 13 July 2009)

We study theoretically the contribution of fluctuating Cooper pairs to the persistent current in super-

conducting rings threaded by a magnetic flux. For sufficiently small rings, in which the coherence length �

exceeds the radius R, mean field theory predicts a full reduction of the transition temperature to zero near

half-integer flux. We find that nevertheless a very large current is expected to persist in the ring as a

consequence of Cooper pair fluctuations that do not condense. For larger rings with R � �, we calculate

analytically the susceptibility in the critical region of strong fluctuations and show that it reflects

competition of two interacting complex order parameters.
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Introduction and main results.—Superconducting fluc-
tuations have been the subject of intense research during
the past decades [1]. At temperatures above the transition
temperature Tc to the superconducting state, when the
system is still metallic, pairs of electrons are formed for
a limited time. These superconducting fluctuations affect
both transport and thermodynamic properties.

In bulk superconductors, Tc can be reduced or even
completely suppressed by various phase-breaking mecha-
nisms, for example, by applying a magnetic field or in-
troducing magnetic impurities. A special situation occurs
for superconducting rings and cylinders threaded by a
magnetic flux �. Tc is periodically reduced as a function
of�, a phenomenon known as Little-Parks oscillations [2].
The period of the oscillations is equal to 1 as a function of
the reduced flux ’ ¼ �=�0, where the superconducting
flux quantum is �0 ¼ �=e [3]; see Fig. 1.

The magnitude of the maximal reduction in Tc is size-
dependent. As we see in Fig. 1, mean field (MF) theory
predicts that for small rings or cylinders with r � R=� <
0:6 the transition temperature is equal to zero in a finite
interval close to half-integer flux, giving rise to a flux-
tuned quantum phase transition; see also Eq. (8) below. In
this Letter, we show that the pair fluctuations give a large
contribution to the persistent current (PC) I even at fluxes
for which Tc is reduced to zero and the system has a finite
resistance.

Recent experiments added significantly to our under-
standing of fluctuation phenomena in superconductors
with doubly connected geometry. Strong Little-Parks os-
cillations in the region where � > R, where Tc is reduced to
zero, have been observed in a transport measurement on
superconducting cylinders [4]. Koshnick et al. [5] mea-
sured the PC in small superconducting rings in the regime
where R> �; for the smallest rings under study, Tc was
reduced by � 6%.

In this Letter, we discuss the PC in the regime of both
moderate Tc suppression for r ¼ R=� * 1 as well as the
strong Little-Parks oscillations for r < 0:6. Before present-

ing the details of our approach, we summarize the main
results of our analysis.
I. Regime with r ¼ R=� < 0:6.—For r < 0:6, the mean

field Tc vanishes in a finite interval of fluxes ð’c; 1� ’cÞ,
and one would naively expect a small normal state PC. We
find, however, that close to the critical mean field line (see
Fig. 1) there is a parametrically large enhancement of the
PC due to quantum fluctuations that decays slowly away
from that line. The magnitude for the normal PC is IN�
1
�0

D
R2

1
logg , where D is the diffusion coefficient and g is the

dimensionless ring conductance [6,7]. Our calculations
show that the PC due to pair fluctuations near ’c is para-
metrically larger and at low T � Tc’¼0 given by ½Tc’¼0 �
T0
c �

IFL � � T0
c

�0

1

’c

�

R
log

�
1

�’

�
; (1)

where �’ � ð’� ’cÞ=’c measures the distance to the
critical flux ’c. When increasing T the PC initially grows
before going through a maximum at finite T, where it can
considerably exceed the result of Eq. (1) [see Fig. 3]. Since
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FIG. 1 (color online). MF phase diagram. Tc’ separates the
metallic (high T) and the superconducting (low T) phases as a
function of the flux ’ ¼ �=�0 through the ring. For sufficiently
small rings with effective radius r ¼ R=� < 0:6, MF theory
predicts a full reduction of Tc for fluxes between ’c � 0:83r
and 1� ’c near ’ ¼ 1=2. The transition line reflects the con-
dition L�1

00 ¼ 0; cf. Eq. (8). The dotted lines give Tn’ defined

below Eq. (3) for n 2 f0; 1; 2g.
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r�1 ¼ �=R is a number of order 1 and D
R2 ¼ 8

�
T0
c

r2
for a

weakly disordered superconductor, we find an enhance-
ment factor of logðgÞ logð1=�’Þ.

Our results are obtained for the case when the flux acts as
a pair-breaking mechanism. Other pair-breaking mecha-
nisms, e.g., magnetic impurities or a magnetic field pene-
trating the ring itself, will lead to similar results. They
cause a reduction of Tc to zero; the pair fluctuations,
however, lead to a parametric enhancement of the PC in
the normal state. Reference [8] suggests that a similar
mechanism due to magnetic impurities is related to the
unexpectedly large PC in noble metal rings [9,10].

A metallic state with small but finite resistance was
observed experimentally in superconducting cylinders [4]
with ’ � 1=2. Further studies will be needed to clarify the
relation to our findings, where a large PC is caused by pair
fluctuations that are unable to condense.

II. Regime with r > 1.—The case r > 1 is suitable for the
description of the experiments on persistent currents by
Koshnick et al. [5]. Previously, this experiment has been
interpreted using a one-dimensional Ginzburg-Landau
(GL) theory to describe the order parameter fluctuations
[11]. Following these lines, one has to resort to numerical
methods [12] in order to describe the critical region close
to Tc, where fluctuations proliferate.

Our key observation is that part of the rings in the
experiment allow for a description using a suitable general-
ization [13] of the 0d Ginzburg-Landau theory. Indeed,
following an expansion of the order parameter field c ð#Þ
in terms of angular momentum modes c n, a simple physi-
cal picture arises in the limit

ffiffiffi
g

p � r. Two of the modes

compete with each other close to half-integer flux, while at
the same time both of them strongly fluctuate in the critical
regime close to Tc.

Formally, the competition arises due to the quartic term
in the GL functional that induces an interaction between
the modes [14] and reveals itself in the experiment mostly
in the slope of the PC, the susceptibility � ¼ � @I

@� . With

this insight � can be calculated analytically even in the
critical fluctuation regime.

As an example, denoting the susceptibility at Tc and zero
flux by �0 and at Tc;’¼1=2 by �1=2, we find

�1=2=�0 � �2:7
ffiffiffi
g

p
=r: (2)

Experimentally, a strong enhancement of the magnetic
susceptibility near ’ ¼ 1=2 compared to ’ � 0 was ob-
served, and Eq. (2) demonstrates that it is controlled by the
parameter

ffiffiffi
g

p
=r. If it is large, the current will rapidly

change sign as a function of the flux at half-integer flux,
leading to a sawtoothlike shape of i’. The full T depen-
dence of�’¼1=2 is given in Eq. (7). For the smallest rings in
Ref. [5],

ffiffiffi
g

p � 33r (see [15]).
Classical GL functional.—Now we discuss more details

of our approach starting with the description of rings with
only a moderate suppression of Tc (i.e., r * 1).

When the superconducting coherence length �ðTÞ and
the magnetic penetration depth �ðTÞ are much larger than
the ring thickness, the system is well described by a one-
dimensional order parameter field c [16]. The partition
function can be written as a weighted average over con-
figurations of the order parameter c : Z ¼R
Dc exp½�F =T�. By introducing angular momentum

modes as c ð#Þ ¼ ð1= ffiffiffiffi
V

p ÞPnc ne
in# , where V is the vol-

ume of the ring, the free energy functional takes the form

F ¼ X
n

an’jc nj2 þ b

2V

X
nmkl

�nþk;lþmc nc
�
mc kc

�
l : (3)

Here an’ ¼ �T0
c"n’, where "n’ ¼ ðT � Tn’Þ=T0

c is the

reduced temperature, and Tn’ ¼ T0
c ½1� ðn� ’Þ2=r2� is

determined by the sign change of the coefficient anð’Þ
and can thus loosely be interpreted as the transition tem-
perature of mode c n [17]. The mean field transition occurs
at Tc’ that is equal to the maximal Tn for given ’, i.e., at

the point where the first mode becomes superconducting
when lowering the temperature (cf. Fig. 1). The 0d

Ginzburg parameter Gi ¼ ð2b=�2TcVÞ1=2 is an estimate
for the width of the critical regime in the variable "n. The
parameter

ffiffiffi
g

p
=r � 1=5r2Gi has been used when stating

our results. Its relevance is now easily understood. 1=r2 is a
measure for the typical spacing between the transition
temperatures Tn for different modes, since ðT0 �
T1Þ=T0

c ¼ ð1� 2’Þ=r2. This spacing should be compared
to the typical width of the non-Gaussian fluctuation region
Gi. If it is large, a theory including only one or two angular
momentum modes is applicable.
Persistent current.—The persistent current I is found

from the free energy F ¼ �T lnZ by differentiation I ¼
�@F=@�. The normalized current is given by

i ¼ I=ðTc=�0Þ ¼
X1

n¼�1

2�

r2
ðn� ’Þhjc nj2i: (4)

The averaging is performed with respect to the functional
F in Eq. (3). i’ is periodic in the flux ’ with period one.

Case ’ � 0.—The most important contribution in the
regime of non-Gaussian fluctuations close to integer fluxes
comes from the angular momentum mode c n with the
highest transition temperature Tn’. One may then approxi-

mate Eq. (3) by a single mode and calculate with F n ¼
anjc nj2 þ b

2V jc nj4 [18]. This is the 0d limit of the GL

functional [19] where the functional integral becomes a
conventional integral. Indeed, performing the integral in
polar coordinates, one finds Z ¼ ð� ffiffiffiffi

�
p

=�GiÞ	
expðx2nÞerfcðxnÞ, where xn ¼ "n=Gi [20]. Using now
Eq. (4) with one mode only, we find

in ¼ 4�ðn� ’ÞfðxnÞ for ’ � n: (5)

Here ��1=r2Gi�5
ffiffiffi
g

p
=r and fðxÞ¼ ½expð�x2Þ=ffiffiffiffi

�
p

erfcðxÞ��x [20]. We note in passing the high degree
of universality implied by this result: All PC measurements
will fall on the same curve, if the PC—measured in suitable
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units i ¼ I=ðT0
c=�0Þ—and the reduced temperature "’ ¼

ðT � Tc’Þ=T0
c are scaled as i ! iðr= ffiffiffi

g
p Þ, "’ ! "’r

ffiffiffi
g

p
.

This relation is a valuable guide in characterizing different
rings in experiments.

Far above Tc, one obtains as a limiting case the Gaussian
result for a single mode in � 2ðn� ’Þ=r2"n’, that can
also be obtained directly by neglecting the quartic term
in the GL functional. It is known, however, that as soon as
temperatures are too high, "n � 1=r2, it is important to
sum the contribution of all modes [21]. Far below Tc, one
recovers the mean field result iMF � �4

r2Gi2
"n’ðn� ’Þ for

the PC in the superconducting regime. The PC in in Eq. (5)
interpolates smoothly between the Gaussian and the mean
field result.

Case ’ � 1=2.—A very interesting situation occurs at
half-integer values of ’. The transition temperatures for
two modes become equal, their coupling becomes crucial
(’ � 1=2 for definiteness), and we approximate [13]

F ¼ X
i¼0;1

aijc ij2 þ b

2Vol
ðjc 0j4 þ jc 1j4

þ 4jc 0j2jc 1j2Þ: (6)

Calculation of the PC in the presence of the coupling
requires a generalization of the approach used for the
single-mode case [13,22]. In Fig. 2, we display the PC i2
as calculated from Eq. (6) for three different temperatures:
Tcð1=2Þ < T < T0

c , T ¼ Tcð1=2Þ, and T < Tcð1=2Þ. We com-

pare it to the MF result as well as to i20 obtained by
neglecting the coupling jc 0j2jc 1j2 in Eq. (6).

Above Tc’ (" ¼ �0:05 in Fig. 2), in the region where

the mean field result vanishes near half-integer flux, the PC
is purely fluctuational. We deduce from Fig. 2 that the
coupling of the modes is crucial for �ð1=2Þ but not for
the overall shape when T > Tcð1=2Þ. However, just below
Tcð1=2Þ (" ¼ �0:11 in Fig. 2), the coupling is essential. The
mean field result is not applicable as it gives an infinitely
sharp jump in the PC at half-integer flux. The result with-
out coupling of the modes, i20, gives a finite slope, but it is
far from the full current i2 that includes the mode coupling.
The coupling drives the current i2 towards the mean field
approximation iMF which includes only one mode. This
occurs because for a repulsive coupling the dominant mode
suppresses the subdominant one.

Susceptibility.—We will now discuss in more detail the
slope at half-integer flux, which is most sensitive to the
coupling between the modes below and to the non-
Gaussian fluctuations close to Tc. Differentiating the ex-
pression [22] for i2, we obtain

��’¼1=2 � �=ðT0
c=�

2
0Þ ¼ 4�g1ðxÞ � 4�2g2ðxÞ; (7)

where x ¼ "
Gi þ 1

4� [23]. The dimensionless smooth func-

tions g1ðxÞ ¼ 1
2JðxÞ e

ð1=3Þx2erfcðxÞ � 2x
3 and g2ðxÞ ¼

½3=2 ffiffiffiffi
�

p
JðxÞ�e�ð2=3Þx2 � 3x

2JðxÞ e
ð1=3Þx2erfcðxÞ � 1, where

JðxÞ ¼ R1
x dteð1=3Þt2erfcðtÞ, obey g1ð0Þ � 0:78 and g2ð0Þ �

0:315. For large � ¼ 1=r2Gi � 5
ffiffiffi
g

p
=r, one can neglect

the first term in Eq. (7). Then one obtains ��1=2 ¼
�4�2g2ðxÞ. For the susceptibility close to integer flux,
one easily obtains ��0 ¼ 4�fðx0Þ from Eq. (5).
Comparing to the expression for ��1=2, we find Eq. (2).

This is the strong enhancement of �1=2 compared to �0

observed in the experiment [5].
Quantum critical regime.—So far, we have discussed the

limit r ¼ R=� > 1, where the suppression of Tc is small
and a finite temperature phase transition occurs. We will
now discuss the case where r ¼ R=� < 0:6 and Tc is
reduced to zero at a critical flux ’c near ’ ¼ 1=2; see
Fig. 1. Near the quantum critical point (QCP), it is no
longer legitimate to use the classical GL functional, in
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FIG. 2 (color online). The PC i ¼ I=ðT0
c=�0Þ as a function of

the flux ’. Parameters are r ¼ R=� ¼ 1:66, � ¼ 1=ðr2GiÞ �
5

ffiffiffi
g

p
=r ¼ 50, and " ¼ ðT � T0

c Þ=T0
c . The transition for ’ ¼ 1=2

occurs at " ¼ �0:09. Full lines: i2 calculated with F of Eq. (6);
it takes into account two modes and the interaction between
them. We compare i2 to two approximations, which neglect this
interaction. Dotted lines: The mean field approximation iMF

[discussed before Eq. (6)]. Dashed line: i20 calculated with F
of Eq. (6) without coupling [28]. Inset: MF phase diagram,
superconducting region in gray.
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FIG. 3 (color online). The function h that determines the PC
close to the QCP, iG � � 2

�E

1
’c
h, as a function of t ¼ T=T0

c for

given ��0 � 2ð’� ’cÞ=’c. ’c ¼ �r=2
ffiffiffiffiffiffiffiffiffi
2�E

p
is the critical

flux at T ¼ 0 and �E � 1:78. h is defined in the text. The dotted
lines describe classical fluctuations. Inset: MF phase diagram,
superconducting region in gray.
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which only the static component of the order parameter
field is considered. Instead, all Matsubara frequencies
should be taken into account in the imaginary time formal-
ism. The full fluctuation propagator is given by

ð	LÞ�1
nk ¼ ln

�
T

T0
c

�
þc

�
1

2
þ�nþj�kj=2

2�T

�
�c

�
1

2

�
; (8)

where �nð’Þ ¼ 1
2

D
R2 ðn� ’Þ2 and�k ¼ 2�kT are bosonic

Matsubara frequencies [24,25]. Following the standard
approach, we first find the critical line ’ðTÞ in the
temperature-flux plane by equating L�1

00 ¼ 0. For the

QCP at T ¼ 0, one obtains the critical flux ’c ¼
�r=ð2 ffiffiffiffiffiffiffiffiffi

2�E

p Þ, where �E � 1:78 [3]. Because of the flux
periodicity of the phase diagram, the QCP can be observed
in the ring geometry only if ’c < 1=2 which implies r <ffiffiffiffiffiffiffiffiffi
2�E

p
=� � 0:6. Notice that this critical value of r ¼ R=�

is 20% larger than a naive application of the quadratic
approximation valid for r � 1 would suggest.

Restricting ourselves to the interval ’ 2 ð0; 0:5Þ, we
find that near the QCP it is sufficient to consider the n ¼
0 mode. In the Gaussian regime we obtain (cf. Fig. 1) the

following fluctuation contribution to the PC: iG ¼
� 2	’

T0
c’

2ðTÞT
P

kL0k [26]. Expanding L�1
0 in small �� ¼

f�0ð’Þ � �½’ðTÞ�g=�0ð’cÞ, we find with logarithmic ac-

curacy iG ¼ � 16’
�2r2

hð��; tÞ ���!’!’c � 2
�E

1
’c
hð��; tÞ, where

hð��; tÞ ¼ ln s
�� þ 1

2s � c ð1þ sÞ, s ¼ ��
2�Et

, and t¼T=T0
c .

A few remarks are in order concerning this result. The
second term in the expression for h is the classical � ¼ 0
contribution to the sum. The upper cutoff for the frequency

summation has been chosen as �� ¼ 2�0½’ðTÞ� [27]. The
function h has the asymptotic form h � �Et=��þ
lnð1=2�EtÞ for �� � t � 1 and h � lnð1=��Þ for t �
�� � 1. It is important that �� is T-dependent, and in
order to reveal the full T dependence of iG one should first
find the transition line �0½’ðTÞ�. hðTÞ is displayed in
Fig. 3. The maximum of h at finite T is a result of two
competing mechanisms. As T grows from zero, thermal
fluctuations become stronger. At the same time, the dis-
tance to the critical line becomes larger for fixed ’, which
eventually leads to a decrease of iG.

Conclusion.—In conclusion, we showed that, on the
normal side of the flux-tuned superconductor normal-metal
transition in small rings, the fluctuation PC can be very
large compared to the normal case and decays only loga-
rithmically away from the critical point. For larger rings as
studied in recent experiments, we obtained analytical pre-
dictions for the strong fluctuation region.
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