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We consider dephasing in the electronic Mach-Zehnder interferometer strongly coupled to current noise

created by a voltage biased quantum point contact (QPC). We find the visibility of Aharonov-Bohm

oscillations as a function of voltage bias and express it via the cumulant generating function of noise. In

the large-bias regime, high-order cumulants of current add up to cancel the dilution effect of a QPC. This

leads to an abrupt change in the dependence of the visibility on voltage bias which occurs at the QPC’s

transparency T ¼ 1=2. Quantum fluctuations in the vicinity of this point smear out the sharp transition.
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The effective theory of quantum Hall (QH) edge states
[1] suggests that at integer filling factors the low-energy
edge excitations are free chiral electrons. If this were the
case, it would imply that edge excitations remain coherent
at long distances, and would call for various quantum
information applications. Results of tunneling spectros-
copy experiments [2] reasonably agree with the free-
electron description of edge states. In contrast, the first
experiment on Aharonov-Bohm (AB) oscillations of a
charge current in the electronic Mach-Zehnder (MZ) inter-
ferometer [3] has shown that the phase coherence is
strongly suppressed at energies, which are inverse propor-
tional to the interferometer’s size. Moreover, subsequent
experiments [4–7] have found that the visibility of AB
oscillations as a function of voltage bias applied to the
interferometer shows unusual lobe-type behavior, suggest-
ing that a strong Coulomb interaction might be responsible
for dephasing of edge electrons.

Early attempts to explain the unusual AB effect in MZ
interferometers have focused on the filling factor � ¼ 1
state, and suggested different mechanisms of dephasing,
including the resonant interaction with a counterpropagat-
ing edge state [8], the dispersion of the Coulomb interac-
tion potential [9], and non-Gaussian noise effects [10,11].
To date, however, all the experiments, reporting multiple
side lobes in the visibility function of voltage bias, have
been done at filling factor � ¼ 2. In one of our previous
works [12], we have shown that in this case the long-range
Coulomb interaction splits the spectrum of collective
charge excitations at the QH edge (plasmons) in two
modes: a fast charge mode and a slow dipole mode. At
low energies, only slow mode is excited at the first quan-
tum point contact (QPC). It carries away the electron phase
information, but may be absorbed at the second QPC. This
process partially restores the phase coherence at specific
values of voltage bias, and generates multiple lobes in the
visibility. At the same time, thanks to the chirality of edge
states, the electron transport through a single QPC is not
affected by interaction.

Importantly, the experiments [4–7] can be roughly
grouped into two categories according to whether dephas-
ing in MZ interferometers is caused by spontaneous emis-
sion of plasmons, addressed earlier in Refs. [8,9,12], or it is
induced by external noise sources. In the present Letter, we
consider the second group of experiments, where electrons
are injected into a MZ interferometer via an additional
QPC, as shown in Fig. 1. Apart from diluting the incoming
electron channel, this additional QPC generates a partition
noise [13]. The MZ interferometer turns out to be strongly
coupled to this noise, so that non-Gaussian effects, char-
acterized by irreducible moments (cumulants) of the cur-
rent noise, become important. We express the visibility of
AB oscillations in the differential conductance in terms of
the cumulant generating function, and find that in the limit
of large voltage bias, all the current cumulants add up to
cancel the dilution effect of an additional QPC. We predict
that this leads to a phase transition at the QPC’s trans-
parency T ¼ 1=2, where the visibility function of voltage
bias abruptly changes its behavior.
Electronic Mach-Zehnder interferometer.—The model

of a MZ interferometer, introduced earlier in

FIG. 1 (color online). Schematic of the electronic MZ inter-
ferometer. Two chiral channels are formed at the edge of a
quantum Hall liquid at filling factor � ¼ 2. Outer channels
(shown by blue or gray lines) are mixed at two QPCs and
form an Aharonov-Bohm loop. Electrons are injected into the
interferometer through an additional voltage biased QPC, which
is placed at the distance W from the interferometer and has
transparency T.
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Refs. [8,12], is discussed here only briefly. We note that
experimentally relevant energy scales are very small [4–7].
Therefore, it is appropriate to use an effective theory [14]
describing edge states at filling factor � ¼ 2 as collective
fluctuations of the charge density �s�ðxÞ, where � ¼ 1, 2
enumerates channels at the QH edge, and s ¼ U, D enu-
merates arms of the interferometer. The charge density
fields are expressed in terms of chiral boson fields,
�s�ðxÞ, satisfying the commutation relations

½�s�ðxÞ; �k�ðyÞ� ¼ i��sk���sgnðx� yÞ; (1)

namely, �s�ðxÞ ¼ ð1=2�Þ@x�s�ðxÞ. The total Hamiltonian

of a MZ interferometer, H ¼ H 0 þ
P

‘ðA‘ þ Ay
‘ Þ, con-

tains a term describing edge states

H0¼ 1

8�2

X
s;�;�

Z
dxdyV��ðx�yÞ@x�s�ðxÞ@y�s�ðyÞ; (2)

where the kernel, V��ðx� yÞ ¼ 2�vF����ðx� yÞ þ
U��ðx� yÞ, includes a free fermion contribution with the

Fermi velocity vF, and the Coulomb interaction potential
U��. Vertex operators A‘ ¼ t‘ exp½i�D1ðx‘Þ � i�U1ðx‘Þ�,
‘ ¼ L, R, describing electron tunneling between outer
edge channels of the interferometer at the left and right
QPC, are treated perturbatively. The AB phase ’AB is
taken into account via the relation for tunneling ampli-
tudes, t�RtL ¼ jtRtLjei’AB .

The electron current is defined as a rate of change of the
electron number ND in the lower arm: I ¼ i½H ; ND�. To
leading order in tunneling amplitudes, its average value is

given by hIi ¼ R1
�1 dt

P
‘‘0 h½Ay

‘ ðtÞ; A‘0 ð0Þ�i. The AB oscil-

lations in the differential conductance G � dhIi=d�� are
characterized by the visibility V ABð��Þ ¼ ðGmax �
GminÞ=ðGmax þGminÞ. Using the expression for the average
current, one easily finds that both the visibility and the
phase shift of AB oscillations are expressed in terms of the
same complex function [12], namely

VAB ¼ V 0jIð��Þj; �’AB ¼ argIð��Þ; (3a)

Ið��Þ ¼ @��
Z 1

�1
dt

2�
KUðL; tÞK�

DðL; tÞ; (3b)

where V 0 / 2jtLtRj=ðjtLj2 þ jtRj2Þ, and
Ksðx; tÞ / hexp½�i�s1ðx; tÞ� exp½i�s1ð0; 0Þ�i (4)

are the electron correlation functions [15] at the outer
channels of the interferometer.

Correlation functions and FCS.—The Hamiltonian (2),
together with the commutation relations (1), generates
equations of motion for the fields �s�, which have to be
accompanied with a boundary condition:

@t�s�ðx; tÞ ¼ � 1

2�

X
�

Z 1

�1
dyV��ðx� yÞ@y�s�ðy; tÞ;

(5a)

@t�s�ð�W; tÞ ¼ 2�js�ðtÞ; (5b)

where js� is the charge current flowing out of the QPC at
the point x ¼ �W [16]. In general, the fields�s� influence
fluctuations of the currents js� at a QPC, leading to the
dynamical Coulomb blockade in the quantum, low-energy
regime [17], and to cascade corrections to noise in the
classical limit [18]. An important simplification in the
present case arises from the fact that such backaction
effects are absent for chiral edge states [8,12]. As a con-
sequence, in the case of � ¼ 2 the electron transport
through a single QPC is not affected by interactions, which
has been recently confirmed in the experiment [5].
Therefore, by solving Eqs. (5), one may express the corre-
lation functions of the fields �s� in terms of irreducible
moments (cumulants) of the currents, hhjns�ii, and equiva-
lently, via the generator of full counting statistics (FCS)
defined as [19],

	s�ð
; tÞ ¼ hei
Qs�ðtÞe�i
Qs�ð0Þi; (6)

where @ni
 logð	s�Þ=t ¼ hhjns�ii in the long-time limit. Here,
averaging is defined over free electrons, and Qs�ðtÞ ¼R
t
�1 dt0js�ðt0Þ.
All the interaction effects are encoded in a solution of

Eq. (5a). We assume that the Coulomb potential is screened
at distances d, with L � d � a, where a is the distance
between edge channels. The screening may occur due to
the presence of either a back gate, or a massive air bridge
[12]. Therefore, at low energies one can neglect the loga-
rithmic dispersion of the Coulomb potential and simply
write U��ðx� yÞ ¼ U���ðx� yÞ. Nevertheless, the long-
range character of the interaction, i.e., the fact that d � a,
allows one to approximate U�� ¼ �u, where u=vF �
logðd=aÞ � 1. As a result, the spectrum of collective
charge excitations splits in two modes: a fast charged
mode with the speed u, and a slow dipole mode with the
speed v ’ vF. At relevant energies, v=L, the charged mode
is not excited, which leads to a universality in the electron
transport predicted in Ref. [12] and observed in experi-
ments [4–7]. Here, taking the limit u ! 1 simplifies the
solution of Eq. (5a), and we obtain the result �s1ðx; tÞ ¼
��½Qs1ðtÞ þQs2ðtÞ þQs1ðtWÞ �Qs2ðtWÞ�, where tW ¼
t� ðxþWÞ=v.
Finally, we further assume that the noise source is

located far away from the interferometer, W � L, which
reasonably agrees with the experimental situation [4–7].
This assumption implies that the charges Qs�ðtWÞ and
Qs�ðtÞ in the solution for the field �s1ðx; tÞ are well sepa-
rated in time, and therefore contribute independently to the
correlation function (4). Therefore, the correlator Ksðx; tÞ
splits in the product of four terms

KsðL; tÞ / 	s1ð�; tÞ	s1ð�; t� L=vÞ	s2ð�; tÞ
� 	s2ð��; t� L=vÞ; (7)

where we used the definition (6) for the generator of FCS.
Gaussian noise approximation.—We note that the vari-

able 
 in the expression (7) plays a role of a coupling
constant in the context of the noise detection physics [19].
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It is typically small, so the contribution of high-order
cumulants of noise to the detector signal is negligible
[20]. Here, in contrast, 
 ¼ ��, implying that a MZ
interferometer is strongly coupled to noise. Nevertheless,
it is instructive, for comparison purpose, to consider
Gaussian fluctuations first. Expanding the generator (6)
up to second order in charge operators, we obtain

log½	s�ð
; tÞ� ¼ i
hjs�it� 
2Js�ðtÞ; (8)

where a Gaussian noise contribution is given by the inte-
gral

Js�ðtÞ � 1

2�

Z d!Ss�ð!Þ
!2 þ �2

ð1� e�i!tÞ; � ! 0; (9)

and Ss�ð!Þ ¼ R
dtei!th�js�ðtÞ�js�ð0Þi is the noise power.

The expression (9) for the correlation function Js�ðtÞ is
typical in the context of the noise detection physics (see,
e.g., Ref. [20]). In the long-time (classical) limit, a domi-
nant contribution to this function is linear in time: Js�ðtÞ ¼
ð1=2Þhhj2s�iijtj, where hhj2s�ii � Ss�ð0Þ, in agreement with
definition (6) of the FCS generator. For a QPC at zero
temperature, the scattering theory [13] gives

Ss�ð!Þ ¼ Sqð!Þ þ Rs�Ts�Snð!Þ; (10)

where Sqð!Þ ¼ ð1=2�Þ!�ð!Þ is the quantum, ground-

state spectral function, and Snð!Þ ¼ P
�Sqð!� ��Þ �

2Sqð!Þ, is the nonequilibrium contribution (see Fig. 2).

Note that the noise power (10) differs from the one for a
nonchiral case [20].

We now focus on the specific situation shown in Fig. 1,
namely, we set TD1 ¼ TD2 ¼ TU2 ¼ 1 and TU1 ¼ T ¼
1� R. We evaluate the electron correlation function (7)
in the upper arm of the MZ interferometer, using Eqs. (8)–
(10), and arrive at the result

KUðL; tÞ / expfi��Tðt� L=2vÞgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðt� L=vÞp expf��2RT½Jnð��tÞ

þ Jnð��t���L=vÞ�g; (11)

where the function Jn is given by the integral (9) with
Ss�ð!Þ replaced by Snð!Þ. In expression (11), the numera-
tor in the first term originates from the average current
T��=2� in (8), the denominator is the contribution of the
quantum noise Sqð!Þ, and the last term comes from the

nonequilibrium noise Snð!Þ and describes dephasing. The
correlation function in the lower arm of the interferometer

can be obtained from Eq. (11) by setting�� ¼ R ¼ 0with

the result KDðL; tÞ / 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðt� L=vÞp

. Thus for a ballistic
channel, and for L ¼ 0, the electron correlation function
coincides with the one for free electrons. This explains the
fact that in the � ¼ 2 case, the Coulomb interaction does
not affect an electron transport through a single QPC [5],
and justifies our approach.
Next, we use the results for correlation functions Ks to

evaluate the integral (3b). For a large voltage bias
L��=v � 1, we obtain

Ið��Þ / Elb@�� sin

�
���

Elb

�
e���=Edf ; (12a)

Elb ¼ 2�v

TL
; Edf ¼ 4v

�RTL
: (12b)

Thus the visibility V AB, given by Eq. (3a), shows a lobe-
type behavior: It oscillates as a function of voltage bias
��, vanishes at certain values of bias, and decays. Since
the function Ið��Þ is real, the AB phase shift�’AB jumps
by� at zeros of the visibility and remains constant between
zeros, thus showing the phase rigidity [4]. The distance
between zeros of the visibility, Elb, is determined by the
average current of transmitted electrons, and can be viewed
as a ‘‘mean-field’’ contribution to the correlator (11). The
dephasing rate Edf is determined by the current noise
power. The ratio 2Elb=ð�EdfÞ ¼ R is given, in general,
by the Fano factor of Gaussian noise.
Noise induced phase transition.—In what follows, we

consider non-Gaussian noise, and show that the contribu-
tion of high-order cumulants of current is indeed not small.
Note that the ground-state contribution of the current noise,
Sq, that dominates at short times, is pure Gaussian.

Therefore, the denominator in expression (11) remains
unchanged. In the long-time limit, the dominant contribu-
tion to the FCS generator comes from the nonequilibrium
part of noise, Sn. For a QPC, it is given by the well known
expression [19] for a binomial process: 	U1ð
; tÞ ¼ ðRþ
Tei
ÞN , where N ¼ ��t=2� is the number of electrons
that contribute to noise. Applying the analytical continu-
ation 
 ! �, we obtain

log½	U1ð�; tÞ� ¼ ��t

2�
½logjT � Rj þ i��ðT � RÞ�; (13)

where the imaginary part contributes to the effective volt-
age bias in the first term of the correlator (11), while the
real part is responsible for dephasing.
A remarkable property of the expression (13) is that

high-order cumulants of current add up to cancel the
dilution effect of a QPC. Therefore, the continuous varia-
tion of the mean-field contribution in the correlator (11) is
replaced with the jump in the voltage bias across a MZ
interferometer at the point T ¼ 1=2. We evaluate the in-
tegral (3b) in the limit L��=v � 1 and arrive at the result
(12a), as in the Gaussian case, but with new energy scales:

FIG. 2 (color online). Two spectral functions that contribute to
the noise power (10).
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Elb ¼ 2�v

L
; Edf ¼ 2�v

Lj logðT�RÞj ; T > 1=2: (14)

The rigidity of zeros of the visibility for T > 1=2 is clearly
seen in Fig. 3. For T < 1=2, the visibility may be found by
taking the limit Elb ! 1 in the expression (12a) with the

result Ið��Þ / ð1���=EdfÞe���=Edf . Thus, the only
zero of the visibility scales as �� ¼ Edf , given by the
expression in (14).

The behavior of the visibility of AB oscillations, shown
in Fig. 3, may be considered a phase transition, because
strictly speaking, it arises in the classical regime, where the
number of electrons that contribute to this effect is large,
N � 1. The transition occurs at the critical point, 
 ¼ �,
T ¼ 1=2, where the moment generator 	U1ð
; tÞ of a bi-
nomial process vanishes, and can be viewed as a result of
entanglement between electrons of the noise source and
those that contribute to AB oscillations. However, quantum
fluctuations of N at critical point smear out the sharp
transition.

Quantum correction at critical point.—Finding quantum
corrections to the long-time asymptotic of the FCS of
noninteracting electrons requires the evaluation of
Fredholm determinants, which is best formulated in the
wave-packet basis [19]. In the present situation a simplifi-
cation arises from the fact that in the long-time limit the
dominant contribution to the generator (6) comes from
nonequilibrium electrons in the energy interval ��. Such
electrons can be viewed as a ‘‘train’’ of incoming wave

packets WðsnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��=2�vF

p
sinðsnÞ=sn, where sn ¼

ð��=2Þðx=vF � tÞ þ �n, which are normalized asR
dxjWðsnÞj2 ¼ 1. If electrons were transmitted through

the QPC (placed at x ¼ 0 for the convenience) with the
probability T and reflected with the probabilityR ¼ 1� T,

this would lead to a binomial process. However, the fact
that wave packets have a finite width leads to the small
probability Pn ¼ R

0
�1 dxW2ðsnÞ for electrons not to reach

the QPC, which can be well approximated with Pn ¼
½�ð��t� 2�nÞ��1. Thus, taking into account all three
possibilities, we write the moment generating function as
	U1ð
; tÞ ¼

Q
n½ð1� PnÞðRþ Tei
Þ þ Pn�. At critical

point, 
 ¼ �, T ¼ 1=2, this gives the following result:

log½	U1�¼
X
n

logðPnÞ¼���t

2�
½logð���tÞ�1�: (15)

The imaginary part of log½	U1� comes from a branch cut of
the logarithm and grows gradually in the interval T � R 	
1=ð2�2NÞ, smearing out the discontinuity in (13). Using
Eq. (15) we find that at critical point the visibility scales as
V AB/@"expf�"½logð�2"Þ�1�g= ffiffiffi

"
p

, "¼��L=2�v�
1. The result of a numerical evaluation, shown by the black
line in Fig. 3, demonstrates the residual phase coherence at
critical point due to quantum fluctuations of the number N.
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FIG. 3 (color online). The visibility of AB oscillations is
shown as a function of the normalized voltage bias for different
transparencies of the QPC that injects electrons. It is evaluated
numerically using the Gaussian approximation at low bias, and
Markovian FCS at large bias. The visibility shows several lobes
for T > 1=2, while it has only one side lobe for T < 1=2. The
black curve shows the visibility at critical point of the phase
transition. Dashed lines indicate the position of zeros.
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