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We investigate the quantum phase transitions in the half-filled Hubbard model on the triangular lattice
by means of the path-integral renormalization group method with a new iteration and truncation scheme
proposed recently. It is found for a cluster of 36 sites that as the Hubbard interaction U increases, the
paramagnetic metallic state undergoes a first-order phase transition to a nonmagnetic insulating (NMI)
state at U, ~ 7.4t, which is followed by another first-order transition to a 120° Néel ordered state at
U., ~9.2¢t, where t is the transfer integral. The size dependence of the results is also addressed. Our
results suggest the existence of the intermediate NMI phase and resolve some controversial arguments on
the nature of the previously proposed quantum phase transitions.
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Strongly correlated electron systems with frustration
have attracted much interest recently. There are a number
of intriguing phenomena that have revealed new aspects of
electron correlations. One of the striking examples can be
found in an organic compound x-(BEDT-TTF),Cu,(CN);
[1-4], for which the triangular lattice structure of dimer-
ized BEDT-TTF molecules plays an invaluable role in
stabilizing a nonmagnetic spin-liquid insulating state
down to 20 mK [4]. The nonmagnetic insulating (NMI)
state, which is totally different from the naively expected
120° Néel ordered state [5,6], poses an interesting and
challenging problem in the Mott transition of strongly
correlated electrons on the frustrated triangular lattice
[7-21]. In particular, it has been a central issue to figure
out whether such a NMI state is really stabilized on the
triangular lattice, and if so, how we can theoretically
describe the Mott transition without any kind of magnetic
ordering. The answer to the question should provide us
with a deeper understanding of the Mott transition with
strong frustration.

Low-energy properties of such frustrated organic com-
pounds may be described by the single-band Hubbard
model on the triangular lattice at half filling [1,7]. There
have been a number of theoretical investigations on quan-
tum phase transitions of the model [7-21]. However, most
of conventional mean-field and variational treatments fail
to describe the NMI phase, suggesting that the system may
prefer the 120° Néel ordered state [18-20]. Among those
intensive studies, the pioneering work by means of the
path-integral renormalization group (PIRG) method [9] is
believed to provide the most reliable results since it can
fully incorporate quantum fluctuations on the basis of an
unbiased scheme. By this method, Morita et al. reached the
remarkable conclusion that the Mott transition occurs from
the metallic state to the NMI state [9], and the correspond-
ing transition may be continuous. Although the conclusion
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shed new light on the Mott transition, there still remain
some questions/points: (i) Is such a continuous transition
really possible in the fully frustrated system? (ii) The
obtained critical value of the Hubbard interaction seems
much smaller than the values deduced by other methods
(see below). (iii) It is difficult to study the magnetic insta-
bility to the 120° Néel ordered phase by the naive PIRG
method, so that it is unclear whether the NMI phase is
indeed realized against the magnetic instability. We note
that a more recent variational-cluster study found the me-
tallic, NMI, and 120° Néel ordered phases in a certain
parameter regime, but the transition points could not be
estimated due to the problem of its numerical accuracy
[19]. Therefore, it is highly desirable to precisely deter-
mine the ground-state phase diagram and clarify the nature
of the associated quantum phase transitions in order to
elucidate the essential properties inherent in the Mott
transition under strong frustration.

In this Letter, we investigate the quantum phase transi-
tions in the half-filled Hubbard model on the triangular
lattice. By means of the PIRG method [22,23] with an
improved iteration and truncation scheme proposed re-
cently [24], we discuss how the NMI state competes with
the metallic and 120° Néel ordered states. By computing
the double occupancy, the momentum distribution function
and the spin or charge correlation functions, we find that
there are two successive quantum phase transitions among
the metal-NMI-120° Néel ordered phases. The present
results clearly predict the existence of the intermediate
NMI phase and also shed light on some controversial
arguments on the nature of the quantum phase transitions.

Let us consider the single-band Hubbard model on the
triangular lattice. For simplicity, we adopt the square lat-
tice with some diagonal bonds as shown in Fig. 1(b), which
is topologically equivalent to the triangular lattice. The
Hamiltonian we consider reads
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where ¢, (é;ro_) is an annihilation (creation) operator of an
electron at the ith site with spin o (=1, |) and #;, =
é;rl,é,-g. U (>0) is the Hubbard repulsion and ¢ (>0) is
the nearest-neighbor transfer integral.

To study the ground-state properties of the Hubbard
model Eq. (1), we use the PIRG method developed by
Imada group [22,23]. The method is based on a simple
idea that the true ground state |y ¢ is obtained by acting
the imaginary-time evolution operator on an initial state

[po): |) = e BH| o) with B — oo. To approach the

true ground state in the PIRG method, we operate e AT

with small A7 on an approximate ground-state iteratively.
This method is, in principle, independent of an initial state
and an iterative scheme employed. However, how to
choose them are crucial to reach the correct ground-state
within restricted numerical resources. Here we use a new
iteration and truncation scheme proposed in our previous
paper [24], which is extremely efficient in performing the
PIRG calculations with a large number of basis states. We
examine various initial states deduced from unrestricted
Hartree-Fock (UHF) solutions [25]. Besides, we further
consider another class of initial states derived from UHF
solutions in the spin-rotated frame where the quantization
axis of spin is rotated with angles 6, 6, + 27/3, and 6, +
41r/3 respectively for three different sublattices (see
Fig. 1). Performing the PIRG calculation with the initial
states mentioned above, we discuss the ground-state prop-
erties of the Hubbard model on the triangular lattice. In this
Letter, we carry out PIRG calculations for the half-filled
systems with periodic boundary conditions (N = 16, 24,
30, and 36), where N is the number of sites. In our PIRG
calculations, we keep a large number of states (up to 500)
as the Slater basis states, and fix A7/U = 0.5. Our PIRG
results for a small cluster (VN = 16) are in good agreement
with those obtained by the exact diagonalization (ED), as
shown in Fig. 2. One of the remarkable advantages in our
calculation is that our modified PIRG method with a new
iteration scheme can cope with several competing states
near the transition point properly as described in [24]. How
to improve the initial states and extrapolate the true ground
state is the same as in [24], though not shown in the figure.

FIG. 2 (color online). The double occupancy as a function of
U/t for the half-filled Hubbard model on the triangular lattice.
Crosses represent the results for the metastable state in the
system (N = 36). The solid line represents the results obtained
by the ED method. The inset (a) magnifies the double occupancy
near U, and (b) shows the finite size scaling of the charge
excitation gap for U/t =3 (squares), U/t = 6 (triangles),
U/t = 9 (circles), and U/t = 12 (diamonds).

We first compute the expectation value of the double
occupancy >V (A4A;)/N [9]. Here, we focus on the
results for the largest system (N = 36), which are shown
as open circles in Fig. 2. The introduction of the repulsive
interaction monotonically decreases the double occupancy,
implying that the highly correlated metallic state is real-
ized for U < U,,. Further increase in the interaction gives
rise to two successive discontinuities in the curve at U =
U, and U, although the latter singularity is rather weak.
We thus find that the double first-order quantum phase
transitions occur in the system. This is also supported by
the appearance of the two cusp singularities in the curve of
the ground-state energy E,, as shown in Fig. 3. By estimat-
ing the level crossing points of energies for the competing
states, we determine the transition points U/t = 7.4 *
0.1 and U/t = 9.2 = 0.3.

To discuss how the ground-state properties depend on
the system size, we also show the results for different
clusters N = 16, 24, and 30 in Fig. 1. Two first-order
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FIG. 3 (color online). The energies per site for the competing
states in the half-filled Hubbard model on the triangular lattice
(N = 36), where circles, triangles, and squares represent the
energies for the metallic, NMI, and 120° Néel ordered states,
respectively.
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transitions do not occur in small clusters (N = 16 and 24),
but appear clearly in the larger clusters (N = 30 and 36).
Remarkably, the overall pattern of behavior is quite similar
for N = 30 and 36, and the resulting transition points are
little affected by the system size. We thus believe that the
N = 36 system captures the essential properties of the
model, and two successive transitions indeed occur even
in the thermodynamic limit.

Having uncovered that double quantum phase transi-
tions occur, let us now discuss the nature of the three
distinct phases in detail. To clarify the nature of the tran-
sitions, we first calculate the charge excitation gap A,
which is defined as a difference between two chemical
potentials, A, =1(u; — p_), where p. = *[E, (N =
2) — E,(N)]/2. As shown in the inset (b) of Fig. 2, the
finite charge excitation gap is clearly observed for U >
U, although its size in the thermodynamic limit is not
easy to estimate precisely within the present numerical
accuracy. This implies that the metal-insulator transition
occurs at U = U,;. We also calculate the momentum
distribution function n(q) and the momentum-dependent
correlation function in the charge [spin] sector N(q) [S(q)]
[9]. These quantities are, respectively, given by the Fourier
transform of the site-dependent correlation functions,
(el é,p), Ay — (XA, and (S;-S;), where f; =
S higs S = %Zaﬁéfaaaﬂéiﬁ and o is the Pauli matrix.
The computed results for the system (N = 36) are shown
in Fig. 4. For U < U, we find that the discontinuity exists
in the momentum distribution function at the Fermi surface
[Fig. 4(a)]. In this case, no singularity appears in the charge
and spin correlation functions in Figs. 4(d) and 4(g). We
thus confirm that the ordinary paramagnetic metallic state
is stabilized for U < U,;. On the other hand, when U >
U.|, the jump singularity disappears in the momentum
distribution function, as shown in Figs. 4(b) and 4(c), in
accordance with the Mott transition at U = U,;. Corre-
spondingly, the charge correlation function N(g) changes
its |g|-dependence (small |g| region) from linear to qua-
dratic. In the region U, < U < U,,, the repulsive interac-
tion enhances spin fluctuations at g, = *(27/3, 27/3)
characteristic of the 120° Néel ordered phase, but does not
give rise to divergent behavior.

To discuss how magnetic fluctuations induce the 120°
Néel ordered phase, we plot S(gye.x) as a function of U/t
for different choices of the system size in Fig. 5. In larger
systems (N = 30 and 36), we find two clear jumps at U,
and U, that signal the first-order phase transitions.
Furthermore, it is clarified that spin fluctuations are
strongly enhanced for U > U,, which suggests the emer-
gence of the 120° Néel ordered phase. To discuss the
stability of the 120° Néel ordered state, we also estimate
the magnetization modulus defined by My = [25(gpeac)/
(N + 6)]"/2 [5], which may be regarded as the order pa-

rameter in a finite cluster. In the strong coupling region
(U = 10¢), the magnetization modulus is estimated as
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FIG. 4. The momentum distribution function n(g), and the
momentum-dependent charge [spin] correlation function N(q)
[S(g)] for the half-filled Hubbard model on the square lattice
with U/t = 6, 8 and 10. For these values of interaction, the
system is, respectively, in the metallic, NMI, and 120° Néel
ordered phases. Note that the charge correlation shows the
metallic behavior N(q) ~ |q| in (d) and the insulating behavior
N(g) ~ |g|* in (e) and (f).

M5 = 0.43, which is comparable to M35 = 0.401 for the
Heisenberg model (U/t — o) [5]. These observations
naturally lead us to conclude that 120° Néel ordered phase
is indeed realized for U > U,,. In the intermediate phase
U. <U<U,,we find in the inset of Fig. 5 that when the
system size is increased, S(¢pe,x) is also enhanced. Because
of the limited numerical resources, we could not reveal
whether the spin structure factor diverges or saturates in the
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FIG. 5 (color online). The spin correlation function S(g,.e.) as
a function of U/t for half-filled Hubbard model on the triangular
lattice at half filling. Crosses represent the results for the
metastable state in the system (N = 36). The inset shows the
size dependence of S(gpe.) for U/t =6 (squares), U/t =8
(triangles), and U/t = 10 (circles).
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FIG. 6. Phase diagram for the half-filled Hubbard model on the
triangular lattice (N = 36). Mott metal-insulator transition is of
first order and magnetic transition is of weakly first order.

thermodynamic limit. However, its value is considerably
smaller than that for the 120° Néel ordered phase (U, <
U) and the jump singularity at U = U, clearly appears in
the larger clusters (N = 30, 36), as shown in Fig. 5.
Therefore, we believe that in the intermediate phase, the
spin structure factor should not diverge, the long-range
order for the 120° spin correlations should be destroyed
in the thermodynamic limit, and the NMI state is indeed
realized between the metallic and 120° Néel ordered states.

It should be noted that the present results are in contrast
to the previous PIRG results of Morita et al. [9]. First, our
numerical data clearly demonstrate the first-order transi-
tion between the metal and insulator, while Morita et al.
claimed that the transition may be continuous in the ther-
modynamic limit. Furthermore, the transition point U,; ~
7.41 largely exceeds U, ~ 5.2¢ obtained in the latter work
[9]. Second, our new PIRG algorithm can describe the
120° Néel ordered insulating phase which could not be
treated in the previous study. Here we argue what really
causes the difference between these PIRG results. In gen-
eral, it is difficult to describe competing states in the
coexistence region of first-order transitions on an equal
footing. In particular, the PIRG results in the coexistence
region strongly depend on the number of basis states
employed. For example, the metallic ground state as well
as the metastable insulating state can be found in terms of
500 basis states, but the former is missing in terms of 300
basis states in our treatment. We show a typical example of
metastable insulating states in Figs. 2 and 5. Suppose we
regard such a metastable state as the ground-state, the cusp
singularity without discontinuity might appear in the curve
of the double occupancy, as shown in Fig. 2. This would
cause a misleading conclusion that the continuous Mott
transition occurs around a small critical value U, ~ 5¢.
Such pathological behavior becomes more serious when
the system size is increased by keeping the number of basis
states unchanged. We think that the results in Refs. [9,26]
may suffer from a similar problem in the process of taking
the thermodynamic limit (with 300 basis states). This
analysis in turn elucidates that the present PIRG results
are reliable up to the N = 36 cluster, which gives a prac-
tical limitation of our scheme. Nevertheless, we stress
again that although our calculation is limited to such
smaller system sizes, the reliable results obtained from
16 to 36 sites suggest the existence of two successive phase
transitions in the thermodynamic limit.

We show our PIRG phase diagram in Fig. 6, which
supports the existence of the NMI phase [9] and sheds
light on the controversial arguments on the nature of the
quantum phase transitions: The metal-insulator transition
is not continuous but of first order, and the NMI phase
proposed in Ref. [9] is indeed realized against the magnetic
instability to the 120° Néel ordered phase.

Before concluding the Letter, we briefly comment on the
nonmagnetic insulating state found in the organic com-
pound k-(BEDT-TTF),Cu,(CN);. According to the band
structure calculation [1], the transfer integral and the
Coulomb interaction in the compound are estimated as ¢ ~
54.5 meV, t' ~57.5 meV, and U ~ 448 meV (U/t ~ 8.2
and ¢/ /t ~ 1.06), so that the system is well described by the
isotropic triangular lattice model. By exploiting these val-
ues, we conclude that the above compound with U/t ~ 8.2
is indeed in the NMI phase.
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