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A kinetic model for the elastoplastic dynamics of a jammed material is proposed, which takes the form

of a nonlocal—Boltzmann-like—kinetic equation for the stress distribution function. Coarse graining this

equation yields a nonlocal constitutive law for the flow, exhibiting as a key dynamic quantity the local rate

of plastic events. This quantity, interpreted as a local fluidity, is spatially correlated with a correlation

length diverging in the quasistatic limit, i.e., close to yielding. In line with recent experimental and

numerical observations, we predict finite size effects in the flow behavior, as well as the absence of an

intrinsic local flow curve.
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Soft amorphous materials such as foams, emulsions,
granular systems, or colloidal suspensions display at high
enough concentrations complex flow properties, intermedi-
ate between that of a solid and a liquid: at rest they behave
like an elastic solid, but flow ‘‘like a liquid’’ under suffi-
cient applied stress [1–4]. This mixed fluid-solid behavior
occurs above a threshold volume fraction associated with
the appearance of a yield stress �d. The yielding behavior
makes such systems particularly interesting for applica-
tions—from tooth paste to coatings to cosmetic and food
emulsions—but fundamentally difficult to describe [5–7].
Furthermore, it has been recognized in recent years that
this yielding behavior is, in most cases, associated with
peculiar spatial features. These can take the form of in-
homogeneous flow patterns, such as shear bands [1–3,8], or
cooperativity in the flow or deformation response [9–16],
potentially associated with nonlocality in the constitutive
rheological law [11] and dependence of the flow on the
nature of the boundaries [4,17]. While such features appear
to be generic for this class of materials, suggesting an
underlying common flow scenario, a consistent framework
linking the global rheology to the local microscopic dy-
namics is still lacking.

In this Letter, we present a kinetic elastoplastic (KEP)
model, which aims at constructing such a link between the
microscopic and the macroscopic scales. Starting from a
kinetic elastoplastic description of the dynamics, we derive
systematically a (nonlocal) generic constitutive law for the
flow, obtained by coarse graining the microscopic spatio-
temporal dynamics. The predictions of our KEPmodel will
be shown to capture many features of the rheology of yield
stress fluids, and, in particular, the recent experimental
demonstration of cooperativity in the flow behavior of
jammed emulsions [11].

The KEP model, which is detailed below, is based on a
generic picture which has emerged recently for the dynam-
ics of soft glassy materials [14,18,19]. In these materials,
flow occurs through a succession of global elastic defor-

mations and localized plastic rearrangements associated
with a microscopic yield stress; see Fig. 1. These localized
events induce long-range elastic modifications of the stress
over the system, thereby creating long-lived fragile zones
where flow occurs. Flow in these systems is thus highly
cooperative and spatially heterogeneous: a dynamically
active region will induce stress fluctuations of its neighbors
and thus a locally higher rate of plastic rearrangements.
Correlations between plastic events are accordingly ex-
pected to exhibit a complex spatiotemporal pattern [14].
The Letter is organized as follows. (i) We first formulate

the ‘‘microscopic’’ equations constituting our KEP model
on the basis of the above generic scenario, Eqs. (1)–(3),
(ii) then we derive the continuum hydrodynamic limit of
these microscopic equations, and (iii) we finally deduce the
constitutive nonlocal flow rules for plastic flow, as sum-
marized in Eqs. (8). The ‘‘micro-macro’’ derivation of
these constitutive rheological equations is the central result
of this work. As a key point—and beyond simple symme-
try expectations—nonlocality applies on a dynamical order
parameter, the fluidity, defined here as the rate of plastic
events.
The KEP model.—Describing the complex dynamical

elastoplastic processes sketched in Fig. 1 is a formidable
task. Therefore, to get further insight, we propose a sche-

FIG. 1 (color online). Sketch of plastic deformation in amor-
phous media. Deformation occurs via elastic deformation, local-
ized plastic events, and nonlocal redistribution of the elastic
stress, potentially triggering other plastic events.
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matic model, relying on a few simplifying assumptions.
Our KEP model extends on an approach first proposed by
Hébraud and Lequeux (HL) [6], by describing explicitly
spatial interactions between plastic events: the sample is
divided into elementary blocks fig of size a (typically the
size of individual particles), each carrying a scalar shear
stress �i [20], and the system is stochastically described in
terms of the block stress distribution Pið�; tÞ. In this first
approach, relative motion of the blocks (convective shear
flow) is neglected. The distribution Pið�; tÞ evolves via
three mechanisms: an elastic response, under an externally
imposed shear rate _�o

i , a stress relaxation due to local
plastic events, and the modification of stress due to the
plastic events occurring in other blocks, via the generated
long-ranged elastic field. The corresponding mechanisms
are sketched in Fig. 1. The local plastic events will be
assumed to occur above a local threshold value of the stress
�c, and lead to a complete relaxation of the local stress �i

(�i ! �i ¼ 0) on a time scale �. These processes translate
into the following master equation for the local stress
distribution function Pi:

@tPið�; tÞ ¼ �Go _�o
i @�Pið�; tÞ ��ðj�j � �cÞ

�
Pið�; tÞ

þ �iðtÞ�ð�Þ þLðP; PÞ; (1)

with _�o
i the imposed shear rate, Go is the elastic modulus,

� the Heaviside function; the rate of plastic events, �iðtÞ, is
fixed by

�iðtÞ ¼
Z �ðj �0 j ��cÞ

�
Pið�0; tÞd�0: (2)

In the above equation, Eq. (1), the operator formally writ-
ten asLðP;PÞ accounts for the stress modification induced
by events occurring in other blocks j (�i). Indeed the
occurrence of a localized plastic event in a block j induces
a nonlocal stress relaxation at any block i � j due to the
elastic field generated. This can be written in the form
��i ¼ �i;j��j where ��j is the relaxed stress at block j

and�i;j is the elastic stress propagator [14]. Explicit forms

for this (algebraically decaying) propagator were discussed
in Ref. [14].

To express LðP; PÞ, one should thus describe the gain
and loss contributions for the probability Pið�; tÞ due to
events occurring in other blocks. Here we propose a formal
analogy with the Boltzmann equation to construct the
‘‘collision’’ operator LðP; PÞ. This gain and loss balance
thus takes the form

LðP;PÞ¼X
j�i

Z
d�0�ðj�0 j��cÞ

�

�½Pjð�0;tÞPið�þ��i;tÞ�Pjð�0ÞPið�Þ�; (3)

with ��i ¼ �i;j��j ¼ ��i;j�
0 (using the full stress re-

laxation rule ��j ¼ ��0). Note that, in the same spirit as

the Boltzmann Stosszahlansatz, this expression assumes a
decoupling of the plastic-event dynamics.
Finally, inserting this expression for LðP; PÞ in Eq. (1)

provides a closed kinetic equation for the nonlocal elasto-
plastic dynamics. This KEP equation is the first key result
of this work.
Towards continuum equations.—In its above form, the

KEP master equation remains difficult to solve analyti-
cally. To proceed further, we first approximate the above
master equation, i.e., the Boltzmann operator LðP; PÞ,
using a Kramers-Moyal expansion [21]. This is done by
formally expanding the Boltzmann operator for small
stress variations ��i and retaining only the first terms of
the expansion. The further simplification ��j � ��c is

also made in the integrand of the operator [for small _� the
distribution �ðj�j��cÞPið�; tÞ is peaked around �c].
Altogether, this simplifies Eq. (1) to a Fokker-Planck equa-
tion:

@tPið�; tÞ ¼ �Go _�i@�Pið�; tÞ ��ðj � j ��cÞ
�

Pið�; tÞ
þ �iðtÞ�ð�Þ þDi@

2
�2Pið�; tÞ: (4)

In this equation, _�i is the local shear rate ( _�i ¼
_�o
i þ 1

2

P
j�i�ij�c�j) and the coefficient Di quantifies

what appears as a stress diffusion induced by the occur-
rence of plastic events. Its expression derives directly from
the Kramers-Moyal expansion as

DiðtÞ ¼ 1

2

X
j�i

�2
ij�

2
c�jðtÞ: (5)

This key result shows that stress diffusion Di is related to
the rate of plastic events over the whole system, �j (j � i).

Switching to continuous spatial variables, a closed sys-
tem of equations is obtained for the local stress diffusion
Dðr; tÞ, rate of plastic events �ðr; tÞ, and stress distribution
Pð�; r; tÞ. Equation (4) keeps the same form (with i ! r).
A small slope approximation of the self-consistency equa-
tion for D (valid in the hydrodynamic limit where � varies
on a length scale much larger than a) provides a nonlocal
relationship between stress diffusion and rate of plastic
events:

Dðr; tÞ ¼ m��ðr; tÞ þ ��ðr; tÞ; (6)

with � the spatial Laplacian. In this equation, two key
parameters have been introduced: a coupling parameter �,
here defined as � ¼ �2

c

P
i�j�

2
i;j, and an inhomogeneity

parameter m ¼ a2�2
c�

2
nn, with �nn the nearest neighbor

(block-to-block) propagator and a the block elementary
size. In the following we will make use of dimensionless
variables, ~t ¼ t=�, ~r ¼ r=a, ~� ¼ �=�c, ~_� ¼ _�Go�=�c,

~m ¼ m=a2�2
c, ~� ¼ �=�2

c,
~� ¼ ��, and ~D ¼ D�=�2

c, but
will drop the tilde to simplify notations.
Jamming and yield stress.—Let us first discuss briefly

the limiting case m ¼ 0 [in Eq. (6)] where heterogeneities
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are omitted. Under this assumption, the above set of equa-
tions reduce exactly to the HL description in Ref. [6]. A
key result which emerges from the HL description is that it
predicts a jamming transition below a threshold (dimen-
sionless) coupling parameter �< �c ¼ 1

2 , associated with

the building up of a macroscopic dynamic yield stress,
�ð _� ! 0Þ ¼ �d. As shown in Ref. [6], the dependency
of �d on the coupling parameter � takes the form �d /
ð�c � �Þ�, with � ¼ 1=2. This dynamic yield stress �d,
which is smaller than �c, thus quantifies the distance to the
jamming transition [22]. In the following we shall focus on
the jammed state, as defined by a nonvanishing �d.

Nonlocal constitutive flow rules.—We now come back to
the inhomogeneous case [m � 0 in Eq. (6)] and discuss the
solution of the model in the stationary state (@t ¼ 0). In
this case, the stationary Fokker-Planck equation, Eq. (4),
can be solved analytically [6]. The solution is straightfor-
ward and gives an explicit expression for Pð�; rÞ as a sum
of exponentials in �. One then deduces the local averaged
stress ��ðrÞ ¼ R

d�0�0Pð�0; rÞ and the local rate of plastic

events �ðrÞ as defined in Eq. (2). This provides explicit
expressions for these quantities in terms of the diffusion
coefficient DðrÞ and local shear rate _�ðrÞ. Their general
expression only involves elementary functions but is rather
cumbersome, and we do not report it here. However, they
simplify considerably in the limit of slow flow ( _� ! 0) and
close to the jamming point, i.e., small �d. Choosing the
plastic rate � as the key variable, a systematic expansion of
the expressions of �� and D in this regime yields the
following expressions:

�� ¼ ð6�Þ�1 _�;

D� �� ¼ a1�dð�d � ��Þ�þ a2�
3=2 þOð�2Þ; (7)

with �d the dynamic yield stress introduced above, and
a1; a2 two numerical constants [22]. In the following we
shall define f ¼ 6� as the fluidity: the latter naturally
emerges as intimately linked to the rate of plastic events.

Together with the self-consistency relationship Eq. (6),
relating D to �, these expressions provide a closed set of
equations. We rewrite here this set in the physically mean-
ingful form:

�� ¼ 1

f
_�; �f� 1

�2
ðf� fbÞ ¼ 0: (8)

In this equation we have introduced a bulk fluidity fbð ��Þ:
fbð ��Þ ¼ 6ða1�d

a2
Þ2ð ��� �dÞ2 for ��>�d and 0 otherwise. A

fluidity correlation length �ð ��Þ also naturally emerges
from the derivation and takes the expression

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m

a1j ��� �dj
s

(9)

for �>�d, and with a prefactor 21=2 for �<�d. These
coupled equations constitute the nonlocal constitutive flow

rules which emerge from the KEP model, and are the
central result of this work.
The bulk fluidity fbð ��Þ is the value of the fluidity

obtained in absence of nonlocal terms, as obtained in the
HL model: as can be easily verified, the KEP model
predicts a Herschel-Bulkley expression for the flow rule
for low shear rates, with �d as the dynamic yield stress:
��ð _�Þ ¼ �d þ A _�n, with n ¼ 1=2 and A a constant de-
pending on �.
Flow cooperativity.—A key result of the derived flow

behavior, in Eq. (8), is the nonlocal nature of the flow
curve, which introduces a flow cooperativity length �. We
emphasize that this nonlocal flow rule is formally identical
to the phenomenological cooperative rheology introduced
recently to account for the flow of confined jammed emul-
sions in microchannels [11]. In these experiments, the flow
profiles were found to strongly depart from the bulk pre-
diction for confinements typically smaller than a few tens
of droplet diameters. A constitutive law similar to Eq. (8)
was able to rationalize all experimental results, with a
cooperativity length scale of the order of several droplets
diameters. The present derivation starting from a micro-
scopic point of view gives strong support to this phenome-
nological framework.
Physically, � quantifies the spatial spreading of the

plastic activity due to the nonlocal elastic relaxation over
the system. Interestingly, the correlation length diverges at

the dynamical yield stress according to � / j��
�dj�1=2 / _��1=4. Such a power-law divergence is in agree-
ment with recent numerical simulations [12,14,23] and
prediction for slip avalanches in the deformation of solids
[24]. Experimentally no dependence of the cooperativity
length on shear rate was reported in Ref. [11]. However, the
flow behavior in the _� ! 0 limit is difficult to access
experimentally and would certainly require further specific
investigation. Finally, let us quote that similar cooperativ-
ity effects are reported in granular flows [12,15,16], as well
as in numerical simulations of deformation of amorphous
materials [13,18].
As discussed in Ref. [11], nonlocal effects in the flow

curve induce strong departures from the ‘‘bulk’’ prediction
(i.e., without nonlocal effects), as soon as the characteristic
length reaches a fraction of the confinement. Such confine-
ment effects are due to fluidity gradients that may find their
origin either in the existence of stress gradients (such as in
Poiseuille flow) or in boundary effects. Boundary effects
have accordingly a strong influence on the flow, since
Eq. (8) requires the prescription of the fluidity at the
confining walls. The latter is expected to depend on surface
properties, e.g., roughness: a smooth wall is indeed ex-
pected to induce a smaller wall fluidity as compared to a
rough wall, which in turn will modify the shape of the flow
profile in the material. The influence of boundary rough-
ness on the flow is indeed observed experimentally in
various systems [4,11,17] and would definitely deserve a
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more systematic investigation. Finally, another conse-
quence of the nonlocal terms in the flow curve, Eq. (8),
is that the spatial spreading of the fluidity ‘‘soften’’ the flow
velocity profiles: a finite fluidity, and a nonvanishing shear
rate _�, extend to regions where the stress is below the yield
stress �d. In other words, cooperativity may be seen as
suppressing the apparent yield stress of the material and
confined flow can accordingly occur below the yield stress,
in agreement with experiments [11].

A dynamical phase transition.—At a more formal level,
it is interesting to note that the solution of Eq. (6) is the
minimum of the square gradient ‘‘free energy’’:

�ð�Þ ¼
Z

dr
m

2
ðr�Þ2 þ!ð�; ��Þ; (10)

with

!ð�; ��Þ ¼ 1

2
a1�dð�d � ��Þ�2 þ 2

5
a2�

5=2 þOð�4Þ (11)

in the limit of small �. This equation is analogous to a
Landau expansion close to a second order phase transition,
with the dynamic yield stress�d as a critical point. The rate
of plastic events �, i.e., the fluidity, plays the role of the
(dynamic) order parameter, with stationary homogeneous
solution: �bð�Þ ¼ 0 for �<�d and �bð�Þ / ð�� �dÞ2
for �>�d.

Beyond the formal analogy, this suggests an interesting
alternative point of view for flow inhomogeneities. While
the present scenario predicts flow inhomogeneities charac-
terized by a cooperativity length scale, in line with experi-
mental results for dense emulsions, a ‘‘true’’ shear banding
would merely correspond to a first order phase transition
scenario: i.e., the spatial coexistence between two states of
different fluidity for the same shear stress. Recent experi-
mental findings have connected shear banding to the ex-
istence of attractive interactions between particles, thereby
inducing a flow-structure coupling in the material [25]. The
KEP description does not account for these features, and it
would be therefore interesting to include local structure
variables in the description in order to capture such
couplings.

Conclusions.—In conclusion, we have derived a non-
local constitutive equation for the flow of jammed systems
starting from a ‘‘microscopic’’ kinetic elastoplastic model.
The resulting description suggests the cooperative nature
of the flow, in full agreement with recent experimental
findings [11]. Furthermore, this framework puts forward
the role of the fluidity as a dynamical order parameter
characterizing the flow, and here defined as the local rate
of plastic events in the material. Since one expects plastic
events to trigger local velocity fluctuations, characterized

by a rms velocity h�v2i1=2, the latter quantity could provide
an indirect measure of the fluidity, in line with granular

hydrodynamics approaches [26]. It is interesting to note
that similar observations of nonlocality have been reported
in granular flows close to the jamming transition [15,16],
suggesting further universal characteristics.
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[25] L. Bécu, S. Manneville, and A. Colin, Phys. Rev. Lett. 96,
138302 (2006).

[26] J. Errami, L. Bocquet, and T. Lubensky, Phys. Rev. Lett.
89, 184301 (2002).

PRL 103, 036001 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
17 JULY 2009

036001-4


