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We study shear deformation and breakup of voids in silica glass using molecular dynamics simulations.

With an increase in the shear strain, two kinds of defects—threefold-coordinated silicon and nonbridging

oxygen atoms—appear as spherical voids deform elastically into ellipsoidal shapes. For shear strains " >

15%, nanocracks appear on void surfaces and voids deform plastically into a threadlike structure.

Nanocracks are nucleated by the migration of threefold-coordinated Si and nonbridging O on

—Si–O–Si–O— rings. For " > 40%, the threadlike structures break up into several fragments.

DOI: 10.1103/PhysRevLett.103.035501 PACS numbers: 61.43.Fs, 61.72.Qq, 31.15.xv

Bubble deformation and breakup in sheared viscous
fluids is a forefront research area with applications ranging
from food processing, ink-jet printing, glass manufac-
turing, and blending of polymer melts to drug delivery
systems and the rheology of magmas [1–4]. Applications
of drop deformation and breakup phenomena in fluids span
a wide range of spatiotemporal scales. At the continuum
level, drop deformation and breakup have been investi-
gated quite extensively [1–3] as a function of the ratio of
the drop viscosity (��) relative to that of the fluid (�) and

the capillary number C ¼ Ga�
� , where G is the applied

shear rate and a and � are the drop radius and interfacial
tension, respectively. The capillary number represents a
competition between shear-flow forces, which tend to de-
form the drop, and the interfacial tension, which tends to
maintain the spherical shape. For a small Reynold’s num-
ber of fluid motions (�au=� � 1, where � and u are the
fluid density and velocity, respectively), a spherical drop
deforms into an ellipsoid, and the deformation parameterD
[¼ðL� BÞ=ðLþ BÞ, where L and B are the length and
breadth of the drop, respectively] is proportional to C for
C � 1. As C increases, the drop becomes more elongated
and turns into a threadlike structure before breaking up into
smaller droplets above a critical value of C [2]. Long,
slender shapes are observed for an inviscid drop or a bubble
[2], and, in these instances of low viscosity ratios � � 1,
the drop behavior is well described by the slender-body
theory [5]. Hinch and Acrivos predicted on the basis of this
theory [6] that a spherical bubble under simple shear would
deform into an S-shaped, long, thin bubble in the limit
C ! 1. Shape measurements on air bubbles in viscous
liquids support their prediction, and rheology data on
bubble shapes in lava flow at high capillary numbers
(rhyolite) also reveal pointed ends on the bubbles [2–4].
Joseph has argued that cavitation in liquids has much in
common with crack nucleation in amorphous solids and

that a glass is an ideal system to test this commonality [7].
Recently, Argon and Demkowicz performed molecular
dynamics simulations to investigate plasticity in amor-
phous silicon (a-Si) [8]. These simulations reveal that the
structure of a-Si consists of solid and liquidlike regions
with fourfold and fivefold atomic coordinations, respec-
tively. The liquidlike regions are found to locally facilitate
plasticity through the nucleation of shear transformations.
Shear transformations are also the mechanism of plasticity
in metallic and polymeric glasses [8].
In this Letter, we present molecular dynamics (MD)

simulation results for a single void in amorphous silica
(a-SiO2) subjected to a high shear rate between 109 and
1010 sec�1. We prepared two a-SiO2 systems using the
melt-quench method [9]. The system sizes were
ð25:64 nmÞ3 with 1 118 817 atoms and 180:3� 296:7�
180:3 nm3 with 633� 106 atoms. The initial diameter of
the void ranged between 3 and 50 nm, which covers nearly
the entire range of void sizes observed in the damage zone
in dynamic fracture simulations [10] and quasistatic stress
corrosion cracking experiments [11] on silica glass. The
interatomic potential in our simulations includes ionic and
covalent effects through a combination of two-body and
three-body terms [9], and it has been validated extensively
by comparing the MD results for structural and mechanical
properties of a-SiO2 with experimental measurements and
quantum mechanical calculations based on density func-
tional theory [12].
The shear strain is applied with the Parrinello-Rahman

approach in which the elements of a 3� 3matrix, spanned
by the three vectors (h1, h2, h3) that describe the dimen-
sions and shape of the MD box, are treated as dynamic
variables [13]. Periodic boundary conditions are imposed,
and the matrix (h1, h2, h3) evolves in time along with the
atomic positions and velocities. The simulations were per-
formed with temperature control [14] and also in the mi-
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crocanonical ensemble. We find the same results for void
deformation, damage, and breakup in these ensembles.

Figure 1(a) is a snapshot of a deformed void at a shear
strain of 15% in silica glass at room temperature. The
initial diameter of the void is 10 nm. As the strain in-
creases, so does the void deformation, and damage in the
form of nanocracks nucleates on the void surface. The
same kind of deformation and damage is also observed
for voids of initial diameters 3 and 50 nm. Stress calcu-
lations [15] reveal that nanocracks form along the direction
of the maximum tensile stress. Joseph has proposed a
cavitation criterion in a flowing liquid, according to which
a cavity nucleates in the direction of maximum tensile
stress much like the way fracture occurs in amorphous
solids [7]. In the case of a Newtonian fluid in pure shear,
the cavitation direction is predicted to be 45� from the
shear plane. This is indeed the direction of nanocrack
initiation on void surfaces in our simulations.

Figure 1(b) shows the strain variation of the deformation
parameter D for initially spherical voids of diameters 3
(blue), 10 (red), and 50 nm (green). In all three cases, D
increases linearly with strain up to " ¼ 15%, which is an
indication that the void deformation is elastic. To distin-
guish between elastic and plastic void deformations, we
switch off the shear strain after it reaches a certain value
and let the system relax without shear. We find that if the
shear strain rate is dropped to zero before the strain reaches
15%, voids recover their initial spherical shapes and sizes.
Furthermore, there is no damage around the voids for
strains less than 15%. Plastic deformation appears for shear
strain " > 15%, and around " ¼ 25% the voids begin to
deform into threadlike structures with nanocracks on their
surfaces. Plastic deformation of voids into threadlike struc-
tures is consistent with the continuum-based theory [5].
This is due to the fact that the capillary number C in MD
simulations is very large, which is the condition for the
validity of the continuum theory. Based on the MD simu-
lation results for the surface tension � and viscosity �, our
estimate for the critical value of C (¼Ga�=�) at a strain
of 25% is 1013 [16]. At this strain, threefold-coordinated
silicon and nonbridging oxygen defects are formed as a
result of broken Si-O bonds.

Figures 2(a) and 2(b) are snapshots showing long, thin
voids with nanocracks on the surfaces near the middle of
the long axis. Initially, these were spherical voids of diam-
eters 3 and 50 nm. In both cases, the voids become thread-
like before breakup, which occurs above a strain of 40%.
Figure 2(c) shows plastic deformation of a void, which was
initially a sphere of diameter 10 nm. The snapshot taken at
" ¼ 35% shows a long, thin void with ends deformed
roughly like an S shape. There are nanocracks on the
surface and near the ends of the void. As time evolves,
nanocracks grow and the void becomes more elongated,
and at " ¼ 40% the void fragments; see Fig. 2(d).
To confirm that the void deformation is indeed plastic in

the nonlinear deformation regime, we have performed
several simulations in which we switch off the shear strain
after it exceeds 15% and let the system evolve without any
external strain. We find that neither the nanocracks nor the
pointed ends heal completely in such strain-free systems.
When the shear is turned off in the case of the S-shaped
void, the pointed ends fragment in a manner akin to the
‘‘end-pinching’’ mechanism of drop breakup in fluids
[2,17,18]. Note that Hinch and Acrivos [6] predicted an
S-shaped drop in the limit � � 1 and C � 1, and experi-
ments on bubbles in viscous liquids in simple shear flow
support their theoretical analysis based on the slender-body
theory [2]. Threadlike deformations of inviscid drops have
also been observed experimentally in fluids under high
shear rates [2,17].
Detailed analyses of elastic-to-plastic void deformation

and crack initiation and growth reveal a novel mechanism
involving strain-enhanced defect transport; see Figs. 3(a)–
3(c). In the unstrained a-SiO2, each Si atom (yellow) is
connected to four O atoms (red) in the form of a SiO4

tetrahedron, and these tetrahedra are linked into nano-
meter size —Si–O–Si–O— rings through corner-sharing
O atoms. In Fig. 3(a), green and blue regions represent
6- and 9-membered rings, respectively, at a strain of 5%.
The magenta atom is a bridging O, and the blue atom is a
threefold-coordinated Si atom in the 9-membered ring.
Figure 3(b) shows that at a strain of 8% the magenta

FIG. 1 (color). (a) Shear deformation of a spherical void of
diameter 10 nm. (b) Strain variation of the deformation parame-
ter D [ ¼ ðL� BÞ=ðLþ BÞ] for voids of initial diameters 3 (blue
circles), 10 (red squares), and 50 nm (green triangles).

FIG. 2 (color). Panels (a) and (b) show plastic deformations of
voids of initial diameters 3 and 50 nm, respectively. Panel (c)
shows a plastically deformed void which was initially a sphere of
diameter 10 nm, and panel (d) shows its breakup at " ¼ 40%.
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O atom becomes nonbridging, while the blue Si atom
remains undercoordinated. The gray ring with these Si
and O defects is a 13-membered ring. At a strain of 10%,
the green Si and magenta O atoms become fully coordi-
nated by bonding with each other. The blue Si is still
undercoordinated but now belongs to a 14-membered
ring (yellow). Nonbridging oxygen and threefold-
coordinated silicon atoms play pivotal roles in the nuclea-
tion of cracks through the enlargement of —Si–O–Si–O—
rings and in void deformation and shear flow in silica glass.

Figure 4(a) shows the time variation of the density of
undercoordinated Si and O defects in a region, which
encloses the deformed void (initial diameter 3 nm) and

the damage zone around it. We find that this region has
approximately the same number of threefold-coordinated
Si and nonbridging O atoms. The defect density remains
small for " < 15% and then increases before leveling off as
steady plastic flow is established in the system. Voids break
up as soon as the defect density saturates. Figure 4(b)
shows the Si-O pair-distribution function gðrÞ for defects
when the void is elastically deformed (" ¼ 15%) and after
it breaks up (" ¼ 55%). In both cases, there is only one
prominent peak at 1.57 Å, which is shifted to the left
relative to the first peak in the gSi-OðrÞ in bulk a-SiO2

(1.62 Å) because the defects are undercoordinated. The
peak height drops significantly after the system undergoes
elastic-to-plastic transformation. We have also investigated
the dynamics of these defects and find steady plastic flow
along the shear direction. Perpendicular to the direction of
shear flow, the mean square displacement for these defects
oscillates in the elastic regime but increases linearly with
time after the plastic flow is established. The diffusion
coefficient for defects in the plastic regime is
�10�5 cm2=s, which is typical of liquids.
Mott has proposed a model for viscosity of a-SiO2,

which is based on the motion of defects on
—Si–O–Si–O— rings [19]. In this model, two kinds of
defects are invoked to explain experimental results on
plastic flow: (a) a threefold-coordinated Si atom and a
nonbridging oxygen atom arising from a single broken
bond and (b) breaking of a pair of bonds in close proximity
and recombination of resulting threefold-coordinated Si
and nonbridging O atoms. In our simulations, we observe
both kinds of defects in shear-induced plastic flow in silica
glass.
We have also investigated changes in the void shape and

elastic-to-plastic transition in silica glass at 1200 K. The
high temperature systems were prepared by heating room
temperature silica glass to 600, 900, and 1200 K. At each
intermediate temperature and at 1200 K, the systems were
well thermalized before subjecting them to shear strain.
The applied stains rates were the same as at room tempera-
ture. We observe that the voids at 1200 K are partially filled
with atoms released from the void surfaces [see Fig. 5(a)],
which was not the case at room temperature [compare with

FIG. 4 (color). (a) Density of Si and O defects in the damage
zone as a function of strain and (b) Si-O pair-distribution
function for these defects. The initial void diameter was 3 nm.

FIG. 3 (color). Point defects responsible for shear deformation
and flow and crack nucleation in silica glass. (a) A 6-membered
—Si–O–Si–O— ring (green) adjacent to a 9-membered ring
(blue) with a fully coordinated O (magenta) and a threefold-
coordinated Si defect (blue). (b) At a strain of 8%, the magenta O
atom becomes nonbridging, and the blue Si atom remains under-
coordinated. These point defects reside on a 13-membered ring
(gray). (c) At a strain of 10%, the green Si and magenta O atoms
become fully coordinated by bonding with each other, but the
blue Si is still undercoordinated. The yellow region is inside a
14-membered ring.
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Fig. 1(a)]. At 1200 K, the density of atoms inside the voids
increases with time. The voids still undergo spherical-to-
ellipsoidal shape transformation [Fig. 5(a)], but the time
variation of the deformation parameter is slightly less than
that at room temperature. Voids deform into long ellipsoi-
dal shapes with pointed ends, and their breakup is again
preceded by threadlike structures just as at room tempera-
ture; see Fig. 5(b).

In conclusion, MD simulations reveal that, despite the
enormous differences in spatiotemporal scales, the ob-
served shape changes and fragmentation of voids in silica
glass are remarkably similar to the deformation and
breakup of macroscopic inviscid drops at high shear rates.
For small shear strain (<15%), spherical voids in silica
glass deform elastically into ellipsoids. At larger strains,
nanocracks appear on void surfaces, and voids deform
plastically into threadlike structures before fragmenting
at a strain of�40%. We have also observed void deforma-
tion that resembles an S-shaped bubble in a sheared liquid.
Finally, our simulations reveal that the underlying mecha-
nisms of shear-induced void deformation, damage, and
flow in silica glass involves Si-O bond breaking and the
migration of threefold-coordinated silicon and nonbridging
oxygen atoms on —Si–O–Si–O— rings.
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