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The 1:1:2 resonant elastic pendulum is a simple classical system that displays the phenomenon known

as Hamiltonian monodromy. With suitable initial conditions, the system oscillates between nearly pure

springing and nearly pure elliptical-swinging motions, with sequential major axes displaying a stepwise

precession. The physical consequence of monodromy is that this stepwise precession is given by a smooth

but multivalued function of the constants of motion. We experimentally explore this multivalued behavior.

To our knowledge, this is the first experimental demonstration of classical monodromy.
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After more than 300 years since the formulation of
Newton’s laws of motion, one would expect that a system
as simple as a mass on a spring would have been fully
understood for some time. In fact, an in-depth investigation
of even a subset of its possible dynamics produces a
number of surprises. Chief among these is a phenomena
known as Hamiltonian monodromy, which was introduced
by Duistermaat in 1980 as a topological obstruction to the
existence of global action-angle variables [1]. In the reso-
nant elastic pendulum, monodromy has easily observable
physical consequences. Specifically, the observed stepwise
precession of the elliptical swinging major axis is given by
a smooth, but multivalued function of the constants of
motion. This functional form results in loops of values of
the constants of motion having differing overall behavior,
depending on the loop’s topology.

If monodromy were limited to the resonant elastic-
pendulum system as a special case, it would be considered
just an esoteric detail. However, it has been shown theo-
retically to exist in many other common and relatively
simple systems, including the spherical pendulum, the
Lagrange top, and the Kirchoff top [1–4]. Most intriguing
are the quantum mechanical implications in atomic and
molecular systems. When a classical system exhibits mo-
nodromy, the energy eigenstates of the corresponding
quantum system can not be mapped onto a simple lattice
labeled by integer quantum numbers. Defects in the lattice
of eigenstates are the striking signature of monodromy in
the global structure of a quantum spectrum. In addition to
the static effect that monodromy has on global quantum
numbers, dynamical consequences have also recently been
predicted [5,6]. Important quantum systems have been
shown theoretically to have monodromy, including ellip-
soidal billiards [7], trapped Bose gases [8], the Hþ

2 mo-
lecular ion [9], the hydrogen atom in combined electric and
magnetic fields [10–12], dipolar symmetric-top molecules
in electric fields [13], and the ro-vibrational spectra of
quasilinear molecules such as CO2 [14–16]. As we discuss
below, monodromy can occur near relative equilibria.

There is thus the intriguing possibility that the singular
behavior of monodromy may be a common feature of
dynamics near chemical isomerization thresholds [17].
A quantum analog of the resonant elastic pendulum

under consideration here (Fig. 1) is the Fermi resonance
in the CO2 molecule, whose monodromatic features have
been thoroughly investigated theoretically [14,16]. Despite
the large number of systems in which monodromy is
theoretically predicted, there have been no previous clas-
sical experiments and only a single quantum experiment
[18] of which we are aware. In developing a more heuristic
understanding of monodromy in quantum systems, it is
useful to have a classical example to guide one’s intuition.
Thus we designed our experiment on a readily realized
classical system in which the consequences of monodromy
are relatively easy to observe.
Hamiltonian monodromy is a property of certain inte-

grable systems. For a more complete introduction than
appears here; see Refs. [19,20]. For concreteness, consider
an integrable conservative classical system with N degrees
of freedom described by the Hamiltonian Hðqi; piÞ with
generalized coordinates fqig and conjugate momenta fpig,
with i ¼ 1; . . . ; N. The fqi; pig form the coordinates of the
2N dimensional phase space P2N

q;p. Such systems contain a

set of N independent constants of motion fFkðqi; piÞg that

FIG. 1. Diagram of an elastic pendulum in a gravitational field
of acceleration g. One type of motion is swinging with fixed
energy in the z dimension. This motion projected onto the XY
plane is an ellipse.
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have mutually vanishing Poisson Brackets, fFm; FngPB ¼ 0
for allm, n. The independence of the Fk refers to the linear
independence of the differentials dFk almost everywhere
in P2N

q;p. These types of systems allow the construction of

local action-angle variables [21]. These variables are a set
of coordinates (action-angles) and conjugate momenta
(actions) that obey particularly simple equations of motion.
Specifically, the actions are all conserved quantities whose
conjugate coordinates are 2� periodic and evolve linearly
in time with constant frequencies. Ratios of these frequen-
cies, known as rotation numbers, convey information about
the local choice of action-angle variables. If a rotation
number can not be defined globally by a smooth function,
then neither can the action-angle variables used to calcu-
late it.

The actual calculation of the set of action-angle varia-
bles is highly nontrivial for all but the simplest integrable
systems. When monodromy is present, this construction is
even more difficult as the action-angle variables are not
defined globally. Instead of constructing these variables
directly, the question of whether or not a system contains
monodromy is typically answered through a topological
analysis of the system’s so-called energy-momentum map
(EM). The EM takes points from P2N

q;p and maps them to the

N-dimensional space made up of the constants of motion,
denoted byCN

F . In general,C
N
F contains two types of points,

regular values and critical values. Regular (critical) values
correspond to motions where the differentials dFk are
linearly independent (dependent). Examples of motions
corresponding to critical values are equilibria, with no
motion at all, and relative equilibria, where motion occurs
but the constants of motion are interdependent. For the
elastic pendulum, relative equilibria include pure springing
and circular swinging at a fixed height. As a general rule,
the physically accessible domain of CN

F is bounded by
critical values as the constants of motion are necessarily
interdependent at extreme types of motion. Monodromy
can occur when critical values are imbedded inside the
physically accessible domain of CN

F . For a concrete ex-
ample of a region of CN

F both bounded by and containing
imbedded critical values; see Fig. 2(c). Imbedded critical
values allow for the existence of loops of regular values
that cannot be continuously shrunken to a point. After
going once around one of these singularity-enclosing loops

of initial conditions, the final action-angle variables will
differ from the initial ones. Determination of whether or
not a system contains monodromy then reduces to finding
the constants of motion and analyzing the locations and
types of critical values for the EM.We now summarize this
calculation for the resonant elastic pendulum, the details of
which are in Ref. [22].
The three-dimensional (3D) elastic pendulum consists

of a bob of mass m attached by a spring of constant k to a
pivot point and placed in a vertical gravitational field with
acceleration g, as shown in Fig. 1. Arbitrary initial con-
ditions can result in either regular or chaotic motions [23].
We are interested in regular motions resulting from small
displacements from the equilibrium-hanging position. The
two relevant modes of oscillation inherent to the system are
swinging (pendular) motions with angular frequency!p ¼ffiffiffiffiffiffiffi
g=l

p
, and springing motions with angular frequency !s ¼ffiffiffiffiffiffiffiffiffi

k=m
p

, where l is the equilibrium-hanging length. These
two frequencies are coupled because l depends on k via l ¼
l0 þ mg

k , where l0 is the unstretched length of the spring.

Particularly interesting dynamics occur if the pendulum’s
swinging and springing frequencies are in a ratio 1:2, in
which case energy can transfer efficiently between the two
modes. This transfer is an example of parametric resonance
[24]. Specifically, nearly pure springing motion evolves
into nearly pure-swinging motion. The projection of this
near-pure-swinging motion onto the XY plane is an ellipse
with near-constant major-axis orientation. The plane de-
fined by this major axis and ẑ is called the swing plane.
Energy then transfers back into the springing mode, and
this cycle repeats. The most striking aspect of this motion
is that the major axis of the projected ellipse precesses in a
stepwise manner between successive near-pure-swinging
motions (Fig. 3). Furthermore, the step size between the
swing planes is constant and a function of the initial con-
ditions. Theoretical treatments of this behavior have been
carried out by Refs. [22,25,26]. The main result in
Ref. [22] is that the stepwise precession �� of the
swing-plane orientation � is a rotation number of the
integrable approximation. It is given by a smooth but
multivalued function as a direct physical consequence of
the existence of monodromy. This function is given in
terms of the constants of motion, which we now define.

FIG. 2. (a) Loops of constants of motion in (�, �) space generated from various sets of initial conditions. The singularity at the origin
corresponds to pure springing motion. (b) Resulting swing-plane precession angles for loops corresponding to those in (a), to lowest
order in (�, �). Position on a loop is labeled by the angles �i, which are defined from the center of the ith loop with respect to the
vertical. Clockwise is positive. (c) Critical values of the EM map consist of a conical lemon boundary surface and an enclosed thread.
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The construction of the set of constants of motion begins
with an examination of the Hamiltonian. With the origin at
the pivot point, the full Hamiltonian for the 1:1:2 resonant
elastic pendulum is given by

~H ¼ 1

2
ðp2

x þ p2
y þ p2

zÞ þ zþ 1

2
�2

�
1� 1

�2
� r

�
2
; (1)

where the unit scaling m ¼ g ¼ l ¼ 1 has been used, � ¼
ð!s=!pÞ ¼ ðkl=mgÞ1=2 ¼ 2 is the ratio of springing to

swinging frequencies, r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
, and the pi are

the ith dimensional momenta. ~H is invariant under a rota-
tion around the z axis. Therefore the angular momentum
Lz ¼ xpy � ypx is conserved. After an expansion to cubic

order about the free-hanging equilibrium position and an
averaging over the fast dynamics, the effective
Hamiltonian is given by

H¼ 1

2
ðp2

x þp2
y þp2

z þ x2 þ y2 þ�2z2Þ

þ
�
��

8
½ðxpx þ ypyÞpz þðx2 þ y2Þz�ðp2

x þp2
yÞz�

�

�H2 þH3;

where � ¼
ffiffi
2

p
16 ð�2 � 1Þ, H2 (H3) is the quadratic (cubic)

contribution, and z is now measured from the equilibrium-
hanging position. Under this approximation, the system is
integrable with three constants-of-motion fH;H2; Lzg in
3 degrees of freedom. The critical values of the resulting
EM:fx; y; z; px; py; pzg � fH;H2; Lzg form a ‘‘conical

lemon’’ surface and a thread [Fig. 2(c)]. The thread corre-
sponds to purely springing motions at various total ener-
gies. Loops in the 3D range of the EM are somewhat
difficult to visualize, so a reduction to an equivalent two-
dimensional (2D) system is carried out. Each set of con-
stants of motion is classified first by its value for H2,
effectively taking a slice out of the conical lemon in
Fig. 2(c). A scaling of the remaining two quantities
fH;Lzg is implemented to map the various slices onto
each other. This mapping allows different sets of constants
of motion to be compared easily as points in the now 2D
lemon [Fig. 2(a)]. The new dimensionless constants of

motion are

� ¼ H�H2

�H3=2
2

; � ¼ Lz

H2

: (2)

With this scaling, the thread pierces the 2D lemon at
ð�; �Þ ¼ ð0; 0Þ, producing a singularity [Fig. 2(a)]. This
singularity is responsible for the existence of monodromy.
The presence of the monodromy-producing singularity

causes a rotation number of the integrable approximation
to be multivalued. This rotation number corresponds to the
step size�� of the stepwise-precessing swing plane during
a full cycle of swinging, springing, and back to swinging.
Thus the physical consequences of monodromy are easily
observed. To first order, �� takes the form

�� ¼ argð�þ i�Þ: (3)

The arg function extracts the argument (phase angle) of a
complex number and can be made single-valued but dis-
continuous through a branch-cut or can be viewed as multi-
valued and smooth. The presence of this multivalued
rotation number proves that monodromy exists in this
system. Explicit calculations for the various loops of con-
stants of motion appear in Fig. 2. Curves in Fig. 2(b) are
labeled on the right with their corresponding loop numbers
in (a). Loops not enclosing the singularity return smoothly
back to their initial values. Loop 5 is different in that it does
not.
The experimental goal is to measure �� at positions

along loops similar to those in Fig. 2(a) by varying initial
conditions. Successful experimental measurement of ��
relies on relatively pure and long-lived swinging motion.
The former is necessary to determine when the motion is to
be classified as purely swinging, purely springing, or in
transition. The latter allows for one or more complete
ellipses to be traced out for each purely swinging motion,
which facilitates a determination of the swing-plane ori-
entation. The purity and lifetime of the swinging motion
depends both on initial conditions and on how well the 1:2
resonance condition is satisfied. Our experimental parame-
ters are k ¼ 6:8ð2Þ N=m, m ¼ 0:224ð1Þ kg, and l0 ¼
1:00ð1Þ m. These parameters yield � ¼ 2:0ð1Þ, and pure
swinging motions that persist for several seconds. Typical
energy-damping times are on the order of minutes.
Once motion with well-defined swinging motions can be

created, the next requirement is an accurate determination
of the ball’s 3D position as a function of time, ~xðtÞ. These
data allow for a determination of the swing planes and
therefore the stepwise precession angle, as well as the
calculation of �, �, and the expected ��. We capture the
motion using two video cameras operating at 30 frames per
second, one (XY camera) shooting video from below and
the other (XZ camera) from the side. To determine the
position of the mass, a circle is fit to the ball’s image for
each frame in the video. Our circle-fitting scheme relies on
the color gradient at the edge of the ball’s image and
therefore necessitates a high-contrast ratio between the

FIG. 3. Measured mass positions as projected onto the XY
plane during three successive near-pure-swinging motions.
These data are fit to the expected elliptical functional form.
The major axes of these ellipses represent the orientation of the
swing plane �. In the example data, �� ¼ 32�.
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ball and its background. To achieve the needed contrast,
the ball is painted white and illuminated against a black
background. From measured ~xðtÞ, we fit the projected
elliptical motion of the ball, as viewed by the XY camera
during pure-swinging motion, to an ellipse using a direct
least-squares scheme. Fitting of successive pure-swinging
motions yields the stepwise precession. Our procedure is to
measure three such swing planes and take the average of
the two steps. Typical data for a single experimental run are
shown in Fig. 3. Each point represents the fitted position of
the pendulum bob for a single frame of the captured video.
Step angles between swing planes f1; 2g and f2; 3g typically
differed by 2� to 10�, depending on the ellipse eccentricity.
Instantaneous positions and velocities were measured dur-
ing the part of a projected ellipse with the least curvature to
minimize errors due to accelerations. These instantaneous
conditions were used to calculate the constants of motion
and the expected step angle.

Step-precession behavior for two experimental loops is
shown in Fig. 4. As in Fig. 2(b), the plots are denoted on the
right by their approximate loop labels corresponding to
Fig. 2(a). Since swing planes are only determined within an
additive constant of 180�, continuity of nearby �i mea-
surements is used to determine absolute positions of the
solid circles. Deviation of the singularity-enclosing loop
(�5, solid points) from the expected straight line is due
mainly to nonideal measurements of the constants of mo-
tion. In contrast, the noisy structure in the non-singularity-
enclosing loop (�3, open points) is a combination of these
nonideal measurements and the difficulty of experimen-
tally launching the pendulum bob with predetermined
constants of motion. This difficulty causes the experimen-
tal loops to not be perfect circles, but, crucially, they are
still homotopic to circles. This difficulty is not an issue for
the singularity-enclosing loop, as it shares the same origin
as the arg function. The qualitative difference between the
singularity-enclosing loop (�5) and the non-singularity-

enclosing loop (�3) is clearly evident. We see that the
former loop does not come around to its initial value upon
returning to the initial point, while the latter does.
It is a simple distinction: does or does not the size of a

stepwise precession advance by 360� as one maps out the
behavior along a loop through constants-of-motion space?
Yet, the key to our first-ever experimental study of classical
monodromy is our ability to observe both behaviors in the
resonant elastic pendulum. We hope that this simple clas-
sical example can be part of a solid foundation upon which
to build the intuition necessary to understand the subtle, but
by no means rare, instances in which monodromy pro-
foundly influences the quantum spectra of atoms, mole-
cules, and more complicated objects.
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[23] R. Carretero-González et al., Eur. J. Phys. 15, 139 (1994).
[24] A. Vitt and G. Gorelik, J. Tech. Phys. 3, 294 (1933).
[25] D. D. Holm and P. Lynch, SIAM J. Appl. Dyn. Syst. 1, 44

(2002).
[26] P. Lynch, Int. J. Non-Linear Mech. 37, 345 (2002).

3∼
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FIG. 4. Experimental measurements of the step angle between
successive swinging motions as loops in (�, �) space are mapped
out. A loop enclosing the singularity (solid circles) does not
return to its initial value, thus demonstrating monodromy. These
data agree with the theoretical prediction (solid line). A loop
[loop 3 in Fig. 2(c)] not enclosing the singularity (open circles) is
shown for comparison.
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