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We show that the peculiar topological properties inherent to singular tori play a major role in the

spatiotemporal dynamics of counterpropagating nonlinear waves. Under rather general conditions, these

Hamiltonian wave systems exhibit a relaxation process towards a stationary state. We show that this

stationary state converges exponentially towards the singular torus of the associated Liouville-integrable

Hamiltonian system in the limit of an infinite medium. The singular torus then appears as an attractor for

the infinite dimensional dynamical system, a feature which is illustrated by several key models of

spatiotemporal wave interactions.
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Hamiltonian integrable systems have a long history dat-
ing back to Liouville in the mid-nineteenth century. The
modern mathematical foundations of this domain were
established, in particular, by Arnold [1] one hundred years
later. In these last decades, while the physics community of
dynamical systems was mainly concerned with the theory
of chaos, novel methods were introduced in mathematics to
study integrable systems [2–4]. More recently, the rele-
vance of these mathematical structures has been analyzed
in the context of mechanical systems characterized by a
small number of degrees of freedom [5–9]. This Letter is
aimed at describing a novel class of infinite dimensional
dynamical systems in which these novel mathematical
concepts find a remarkable physical application.

We consider a HamiltonianH with 2 degrees of freedom
defined on the four-dimensional phase space R4. The
Hamiltonian H is said to be Liouville integrable if it has
as many independent constants of motion as number of
degrees of freedom. Since H does not depend on time, it
will be integrable if there exists a function K which
Poisson commutes with H, i.e., fH;Kg ¼ 0. From our
perspective, the essential object in the study of integrable
systems is not the Hamiltonian H but the energy-
momentum map F :ðp1; q1; p2; q2Þ ! ðH;KÞ [2] where
(p1, q1, p2, q2) are coordinates of R

4. The image of F is
called the energy-momentum set or bifurcation diagram.
The Liouville-Arnold theorem states that the inverse image
F�1ðh; kÞ of a point (H ¼ h, K ¼ k) of the energy-
momentum set is a two-dimensional torus. This theorem
assumes that this preimage is connected and compact, and

that the two gradient vectors of the phase space ~rH ¼
ð@H@p1

; @H@q1 ;
@H
@p2

; @H@q2Þ and ~rK are not parallel for any point of

the torus. Under these conditions, the corresponding point
(h, k) is a regular point of the image of F . At a regular
point, action-angle variables can be introduced [1].

However, if the two vectors ( ~rH, ~rK) are parallel for
some points of the torus, then the preimage F�1ðh; kÞ is
no longer a regular torus, but a singular torus. The topology

of the singular torus can be of different types: a point (for
an equilibrium), a circle (for a periodic orbit), or a pinched
torus, to cite a few. A pinched torus is a regular torus whose
radius has been pinched to zero in one point, as illustrated
in Fig. 1(a). Simple integrable Hamiltonians with pinched
tori may be constructed with the momentum K ¼ ðp2

1 þ
q21 � p2

2 � q22Þ=2, which corresponds to a 1:� 1 reso-
nance, i.e., two harmonic oscillators of þ1 and �1 fre-
quencies [3]. In general, a singular pinched torus is
associated to an isolated singularity of the energy-
momentum set [see Figs. 1(b) and 1(c) for an example].
The analysis of the geometry of singular tori and their

importance in the dynamics of integrable Hamiltonians
have been established only recently in the mathematical
community. The fundamental problem was the general-
ization of action-angle variables to the whole phase space
when the set of regular points (H, K) is not simply con-

FIG. 1 (color online). Image of the energy-momentum map F
(gray) for the Hamiltonian (2) (b) and the Hamiltonian (4) (c).
The singular points are represented by solid lines and black dots.
The dots indicate the positions of the image of the pinched
tori (a). The red spiral path in (b) schematically represents the
evolution [ ~HðtÞ, ~KðtÞ] of the PDE system (1) during the space-
time relaxation process [also see Figs. 2(c) and 2(d)].
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nected. This precisely occurs when the image of F pos-
sesses an isolated singularity associated to a pinched torus.
Duistermaat solved this problem in 1980 by introducing
the concept of monodromy [2,4]. Nontrivial monodromy
implies that after a loop in the regular values of the energy-
momentum set, the action variables are changed. Different
examples of monodromy in classical and quantum physics
have been subsequently discovered [3,5], in particular, in
the rovibrational spectrum of the CO2 molecule [6], in the
hydrogen atom in electric and magnetic fields, or in the
problem of scattering by a central potential [7].

Our aim in this Letter is to show that singular tori play a
major role in a novel class of physical systems. We deal
here with the counterpropagating spatiotemporal dynamics
of a nonlinear wave system which is ruled by partial
differential equations (PDEs), i.e., a dynamical system
with an infinite number of degrees of freedom. The nu-
merical simulations reveal that, under rather general con-
ditions, the spatiotemporal dynamics relaxes towards a
stationary state. This property allows us to establish a
relation between the original PDE and the corresponding
integrable Hamiltonian dynamics ruled by the stationary
ordinary differential equation. As a remarkable result, such
a stationary state is shown to converge exponentially to the
singular torus of the phase space of the associated ordinary
differential equation.

The peculiar topological property inherent to the singu-
lar torus manifests itself by a robust character of the sta-
tionary solution of the PDE; i.e., the stationary solution
preserves its global form regardless of the considered
system size L. A consequence of this robust character is
that the Hamiltonian system exhibits an attraction process:
a wave injected from one side of the medium is attracted,
independently of its initial state, towards a unique state
determined by the properties of the singular torus. The
space-time relaxation phenomenon and the associated pro-
cess of attraction are exemplified by several key models of
nonlinear wave interactions.
Let us begin to consider the evolution of a nonlinear

wave in a periodic potential. This problem is encountered
in a variety of physical disciplines such as optics, con-
densed matter physics, or Bose-Einstein condensates [10–
12], in which the behavior of atoms mimics those of
electrons in crystals or photons in optical gratings.
Because of Bragg-reflections inherent to wave propagation
in a periodic potential, these systems are generally char-
acterized by a counterpropagating wave interaction
[11,12]. More specifically, we analyze the one-dimensional
model that rules nonlinear wave propagation around a
forbidden frequency band gap

@u

@t
þ @u

@z
¼ i�vþ i�ðjuj2 þ 2jvj2Þu;

@v

@t
� @v

@z
¼ i�uþ i�ðjvj2 þ 2juj2Þv;

(1)

where � and � refer to the linear and nonlinear coefficients,
u and v being the forward and backward complex wave
amplitudes. In optics, Eq. (1) may be derived from
Maxwell’s equations, while in Bose-Einstein condensates
they may be derived from the nonlinear Schrödinger equa-
tion with a periodic potential.
The counterpropagating nature of the interaction im-

poses the following boundary conditions: uð0; tÞ ¼ u0,
vðL; tÞ ¼ vL. The numerical integration of (1) reveals
that, after a complex transient, the two fields relax towards
a stationary state associated to a singular torus (see Figs. 1
and 2). Indeed, to analyze the stationary solutions of
Eqs. (1), we remark that the corresponding ordinary dif-
ferential equation’s system is Hamiltonian with respect to
the canonically conjugate real coordinates (pu, qu, pv, qv)
defined by u ¼ qu þ ipu and v ¼ qv � ipv,

H ¼ �ðpupv � quqvÞ � �juj2jvj2 � �ðjuj4 þ jvj4Þ=4:
(2)

The momentum K ¼ ðjuj2 � jvj2Þ=2 being a constant of
motion, this system is Liouville integrable. We underline
that the invariant K corresponds to a 1:� 1 resonance that
originates in the counterpropagating nature of the wave
interaction. The bifurcation diagram (H, K) of this system
has been constructed by using the mathematical tools of
Ref. [3] [see Fig. 1(b)]. Each point of the gray region in

FIG. 2 (color online). (a)–(b) Numerical simulations of the
PDE (1) showing the spatiotemporal evolution of the fields juj
(a) and jvj (b): after a transient the two waves relax to the
stationary state associated to the singular pinched torus located
at H ¼ K ¼ 0 [see Fig. 1(b)]. (c) Corresponding trajectory
[ ~HðtÞ, ~KðtÞ] in the energy-momentum set (H, K). The small
arrow in (c) indicates the temporal evolution of the trajectory
[� ¼ 1, � ¼ 0:5, u0 ¼ 1 (red), vL ¼ 0:25 (blue)]. (d) Evolution

of the distance � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ K2

p
between the singular torus and

the regular torus on which lies the stationary state for a given
length L: the stationary state converges exponentially towards
the singular torus as L ! þ1.
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Fig. 1(b) lifts to a regular torus in the phase space, whereas
singular points are indicated by solid lines and dots lifted to
singular tori. The numerical simulations show that the
spatiotemporal dynamics is attracted towards a stationary
state associated to a pinched torus, whose image is located
at H ¼ K ¼ 0. This relaxation process is illustrated in
Figs. 1(b) and 2(c), which show the temporal evolutions
of ~HðtÞ ¼ 1

L

R
L
0 Hðz; tÞdz and ~KðtÞ ¼ 1

L

R
L
0 Kðz; tÞdz. In a

loose sense, ~H and ~K may be regarded as the instantaneous
Hamiltonian and momentum averaged over the length L.
The trajectories in Figs. 1(b) and 2(c) thus represent the
spatiotemporal relaxation of the system towards the
pinched torus (H ¼ K ¼ 0). Note that, for a finite length
L, the relaxation occurs to a point in the neighborhood of
the pinched torus H ’ K ’ 0 [see Fig. 2(c)]. Actually, the
numerical simulations reveal that the stationary state con-
verges exponentially towards the pinched torus in the limit
L ! þ1, as illustrated in Fig. 2(d). We conjecture that this
exponential law originates in the logarithmic divergence of
one of the periods of the torus as the distance between this
torus and the pinched torus tends to zero.

This process of attraction towards a singular torus allows
the interpretation of a recent experiment realized in optical
fibers [13]. This effect was called polarization attraction
due to its role in the dynamics of wave polarizations. Let us
consider the counterpropagating four-wave interaction
ruled by the following PDE:

@ ~S

@t
þ @ ~S

@z
¼ ½ ~S� J ~Sþ 2 ~S� J ~J�;

@ ~J

@t
� @ ~J

@z
¼ ½ ~J � J ~J þ 2 ~J � J ~S�:

(3)

In the Poincaré-Stokes formalism, ~S ¼ ðSx; Sy; SzÞ and
~J ¼ ðJx; Jy; JzÞ respectively represent the polarizations of

the forward and backward waves, while J denotes the
diagonal matrix diagð�1; 0;�1Þ [14].

The phase space of the stationary ordinary differential
equations (3) is the product of two spheres, S2 � S2. The
dynamics of the stationary state is governed by an inte-
grable Hamiltonian

H ¼ 2ðSxJx þ SzJzÞ � ðS2y þ J2yÞ=2; (4)

and the momentum K ¼ Sy þ Jy. On the basis of Ref. [8],

we constructed the corresponding bifurcation diagram il-
lustrated in Fig. 1(c). The space-time dynamics of the
PDEs (3) is shown to be attracted towards one of the two
singular pinched tori. As for the model (1), the conver-
gence towards the singular torus follows an exponential
law (data not shown). This exponential convergence plays
an essential role for the experimental applications of the
attraction process; in particular, it permitted the observa-
tion of polarization attraction within a very short nonlinear
medium of length L [13].

Remarking that the pinched torus is a particular example
of a singular torus encountered in integrable Hamiltonians
[3], one may wonder whether other kinds of singular tori
could be relevant to nonlinear wave systems. We illustrate
this aspect by considering the example of the three-wave
interaction, which is known to occur in any weakly non-
linear medium whose lowest order nonlinearity is qua-
dratic in terms of the wave amplitudes. For this reason
the three-wave interaction is encountered in such diverse
fields as plasma physics, hydrodynamics, acoustics, and
nonlinear optics [15]. In its counterpropagating configura-
tion, the three-wave interaction model takes the form

@u

@t
þ@u

@z
¼�vw;

@v

@t
þ@v

@z
¼uw�;

@w

@t
�@w

@z
¼uv�;

(5)

where u and v (w) refer to the forward (backward) propa-
gating waves. Introducing the canonically conjugated real
coordinates u ¼ qu þ ipu, v ¼ qv þ ipv, and w ¼ qw �
ipw, the three degrees of freedom Hamiltonian associated
to the stationary PDEs (5) reads

H ¼ �qvqwpu � pvpwpu � qvpwqu þ pvqwqu: (6)

The constants of motion are J ¼ ðjwj2 � juj2Þ=2 and N ¼
ðjuj2 þ jwj2 þ 2jvj2Þ, which, respectively, correspond to
the 1:� 1 and 1:1:2 resonances. This Hamiltonian system
exhibits a rather complex three-dimensional bifurcation
diagram that can be constructed using techniques devel-
oped in [9]. We remark that this set is also encountered in
the classical dynamics of the Fermi model of the CO2

molecule [6]. It is characterized by a line of singularities
for J ¼ H ¼ 0, whose preimage is a singular torus that is

FIG. 3 (color online). (a) Bifurcation diagram of the energy-
momentum map F :ðqu; pu; qv; pv; qw; pwÞ ! ðH;N; JÞ. Each
point of the singular line (H ¼ J ¼ 0) lifts in phase space to a
singular torus which is both pinched (b) and curled (c).
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both pinched and curled: in the subspace N ¼ const the
torus is pinched, whereas it is curled in the subspace J ¼
const, as illustrated in Fig. 3. Note that a curled torus can be
constructed by gluing together two cylinders along a line
and identifying the extremities after a half-twist.

The numerical simulations of the PDEs (5) reveal that
the space-time dynamics is attracted towards a stationary
state, in a way akin to the relaxation process illustrated in
Figs. 2(a) and 2(b). The stationary state lies on a regular
torus, which is shown to converge exponentially towards
the singular torus at (J ¼ 0, H ¼ 0) when the interaction
length L ! 1 [see Fig. 4(a)]. Accordingly, the stationary
solution satisfies juðzÞj ¼ jwðzÞj, which means that the
backward wavew is attracted towards the state u0 ¼ uðz ¼
0Þ, regardless of its initial condition at wL ¼ wðz ¼ LÞ.
This attraction process is clearly visible in the numerical
simulations of the PDEs (5), as illustrated in Fig. 4(b).
Note that the attraction process takes place irrespective of
the boundary condition v0 ¼ vðz ¼ 0Þ, as revealed by
Fig. 4(c). We underline that, because of the singular nature
of the torus, the global form of the stationary solutions
reported in Figs. 4(b) and 4(c) is preserved for larger non-

linear interaction lengths L. This remarkable robustness is
illustrated in Fig. 4(d), in which we report the output values
of the fields [uL ¼ uðz ¼ LÞ, vL ¼ vðz ¼ LÞ, w0 ¼
wðz ¼ 0Þ] for increasing lengths (L) of interaction, keep-
ing fixed the boundary conditions (u0 ¼ 1, v0 ¼ 0:1,
wL ¼ 0:5). For large L, the fields asymptotically reach
the values predicted by the singular torus, i.e., u2L ¼ w2

L,
w2

0 ¼ N � u20 � 2v2
0, v2

L ¼ N=2� w2
L with N ¼

2ðu20 þ v2
0Þ.

In summary, through the analysis of three fundamental
models of spatiotemporal wave interactions, we have
shown that the peculiar topological properties of singular
tori play a previously unrecognized fundamental role in the
dynamics of a wave system. Within these models equa-
tions, we also showed that the asymptotic dynamics of a
system with an infinite number of degrees of freedom is
captured by a low-dimensional dynamical system. Given
the ubiquitous character of the considered model equa-
tions, the phenomenon of attraction reported here may be
transposed to a large variety of physical systems.
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FIG. 4 (color online). Properties of the stationary solutions
obtained by solving numerically the PDEs (5). (a) Exponential
convergence of the stationary solution towards the pinched-
curled torus as L ! 1 (the distance between the regular and

the singular torus is given by � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þH2

p
). (b) The field w is

attracted towards 1 regardless of its boundary condition wL

[u0 ¼ 1, v0 ¼ 0:2]. (c) Stationary states of w for different
boundary conditions v0 ranging from 0 to 1 [u0 ¼ 1].
(d) Dependence on L of uL (blue), vL (green), and w0 (red),
keeping fixed the boundary conditions (u0 ¼ 1, v0 ¼ 0:1, wL ¼
0:5): the fields asymptotically reach the values corresponding to
the singular torus (horizontal dashed lines).
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