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We consider an aperiodic array of coupled metallic waveguides with varying subwavelength widths.

For an incident plane wave, we numerically demonstrate that a focus of as small as one-hundredth of a

wavelength can be achieved for a focal distance that is much longer than the wavelength. Moreover, the

focusing behavior can be controlled by changing either the incident wavelength or the angle of incidence,

thus providing the capability of nanoscale beam steering. We show that the behavior of such subwave-

length focusing can be understood using Hamiltonian optics.
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The study of waveguide array structures has been of
fundamental interest in demonstrating optical analogues
of semiclassical electron dynamics [1–4], as well as for
numerous linear and nonlinear optics applications [5–8].
While most of the earlier studies have focused on dielectric
waveguide structures, there has been recent work extend-
ing such study to metallic waveguide arrays [9–13].
Compared with dielectric structures, the use of metallic
waveguide arrays, with different dispersion characteristics
and with each individual waveguide supporting deep-
subwavelength modes [14], provides important new oppor-
tunities for manipulating light at the nanoscale. For ex-
ample, periodic metallic waveguide arrays can act as an
effective negative index material [9]. When a narrow ex-
panding Gaussian beam impinges on such a planar struc-
ture, it negatively refracts and, as a result, shows some
focusing inside the structure. Alternatively, a curved input
facet can be shown to yield similar focusing behavior [10].
In a different setup, time reversal techniques are used to
design a specific wave front to couple light into a periodic
metallic waveguide array from the side and achieve deep-
subwavelength confinement [11].

In this Letter, we consider an aperiodic metallic wave-
guide array consisting of subwavelength slits in gold, and
numerically demonstrate focusing of an incident plane
wave into a single slit [Fig. 1]. We also show that the entire
focusing behavior can be analytically understood using a
Hamiltonian optics approach. In this focusing scheme, for
an incident beam at a free space wavelength of �, most of
the incident power can be concentrated into a focal spot
with a deep-subwavelength dimension that can be as small
as �=100 and with a focal distance that is several wave-
lengths long. Therefore, an aperiodic metallic waveguide
array enables low-loss deep-subwavelength focusing over
a long focal distance, which is of substantial interest in
nanophotonics. In contrast to previous works on focusing
in metallic waveguide arrays, which all use periodic struc-
tures [9–13], our aperiodic approach uses an incident wave
that is neither amplitude nor phase modulated to focus

most of the incident power into a single slit, with a struc-
ture that has a simple planar geometry.
As a concrete example, consider a structure that operates

at a wavelength of 1 �m, as shown in Fig. 1(a). At this

FIG. 1 (color online). Deep-subwavelength focusing with an
aperiodic metallic waveguide array. (a) The device geometry: a
plane wave (1 �m wavelength) incident upon an aperiodic array
of coupled metallic waveguides of varying width (from the side
to the center: 46, 54, 62, 70, 78, 84, 90, 94, 98, 100 nm) and
constant gold spacing (36 nm). (b) Contour plot of the dispersion
relation kzðx; kxÞ throughout the structure; the kx axis is rescaled
(with PðxÞ, the local period) so that for every position x only the
first Brillouin zone is shown. (c) Ray tracing inside the structure
using Hamiltonian optics. The thick (red) contour and ray are
discussed in the main text. FDFD-simulated electric field inten-
sity of the focusing pattern for an incident plane wave (d) and a
narrow Gaussian beam (e).
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wavelength, the permittivity of gold is "m ¼ �39:74þ
1:21i [15] and the slits support low-loss propagating modes
for all considered widths. The slit widths decrease (not
linearly) from 100 nm at the center to 46 nm at the sides.
Subwavelength gold spacing between the air slits is kept
constant at 36 nm. The structure is planar, 2:1 �m wide
and semi-infinite in length.

The behavior of this structure can be understood, pre-
dicted qualitatively and, to a large degree, even designed
for, using Hamiltonian optics [16]. Hamiltonian optics
allows one to track rays as they propagate through a
structure, given that the dispersion relation is known lo-
cally (and does not vary rapidly as a function of position).
In order to obtain focusing, we designed a structure for
which all rays intersect at the same point, independent of
their position of incidence.

Since the dimensions in the aperiodic structure do not
vary much from one slit to the adjacent slit, this structure
can be thought of approximately as locally periodic.
Therefore, at a given frequency !, the Bloch wave disper-
sion relation (for transverse magnetic polarization) can be
calculated locally using a transfer-matrix formalism [17]:

cos½kxða1 þ a2Þ� ¼ cosðk1a1Þ cosðk2a2Þ �
�
"2mk

2
1 þ k22

2"mk1k2

�

� sinðk1a1Þ sinðk2a2Þ; (1)

with k1 ¼ ðk20 � k2zÞ1=2 and k2 ¼ ð"mk20 � k2zÞ1=2, where a1
is the slit width, a2 is the metal thickness, k0 is the free
space wave vector, and kz is the propagation wave vector
along the z direction, parallel to the slit. For our structure,
the exact dispersion relation [Eq. (1)], in fact, matches well
with a tight-binding approximation [8,18]:

kz ¼ �s þ �a

2
þ �s � �a

2
cosðkxPÞ; (2)

where �s and �a are the symmetric and antisymmetric
solutions of kz in Eq. (1) for kx ¼ 0 and kx ¼ �=ða1 þ a2Þ,
respectively. Equation (2) differs from the dielectric case in
that �s is smaller than �a (corresponding to a negative
coupling constant between neighboring slits.). Note that
�s, �a and the period P (¼a1 þ a2) are all a function of
slit width and therefore, in the aperiodic structure, a func-
tion of position x.

The light trajectory in such an aperiodic structure can be
calculated using the Hamiltonian optics formalism, in
which a Hamiltonian can be directly derived from the
dispersion relation [Eq. (2)] as:

Hðx; kxÞ ¼ kz � �sðxÞ þ �aðxÞ
2

� �sðxÞ � �aðxÞ
2

� cos½kxPðxÞ�: (3)

Here�s,�a andPwere calculated for each slit width in the
lossless periodic structure and then fitted as a function of
position x with a polynomial. Figure 1(b) represents solu-
tions to Hðx; kxÞ ¼ 0 for different kz values. As a result of

continuous translational symmetry along z, kz is a con-
served quantity; thus, every contour in Fig. 1(b), which is at
a constant kz, corresponds to a light trajectory in real space.
From the Hamiltonian of Eq. (3), the trajectory of a ray

in the structure can be solved using:

dx

dz
¼ @Hðx; kxÞ

@kx
;

dkx
dz

¼ � @Hðx; kxÞ
@x

: (4)

Figure 1(c) shows the trajectories of several rays that have
no initial lateral momentum (kx ¼ 0), corresponding to a
perpendicularly incident plane wave. We link the flow in
Hamiltonian phase space to the propagation in real space
for one position of incidence [the thick (red) contour in
Fig. 1(b) and the thick (red) ray in Fig. 1(c)]. We note that
the ellipse gets traversed in counterclockwise direction.
This means that when the kx wave vector points in one
direction, light moves in the opposite x direction. Hence
this structure exhibits negative refraction [9]. This will be
shown in more detail below for rays that are incident under
an angle.
We can analytically describe the ray trajectory if we

approximate the Hamiltonian to second order in kx and x,
which requires parabolic fits: �sðxÞ ¼ �s;0 þ �s;2x

2;

�aðxÞ ¼ �a;0 þ �a;2x
2 and PðxÞ ¼ P0 þ P2x

2. In this ap-

proximation, the Hamiltonian can be written as

Hðx; kxÞ ¼ kz � �s;0 � �s;2x
2 þ 1

4
ð�s;0 � �a;0ÞP2

0k
2
x:

(5)

The phase space contour is then exactly an ellipse. As a
result, the ray goes through a sinusoidal trajectory as it
propagates along the z direction

xðzÞ ¼ C1 sinf½ð�a;0 � �s;0Þ�s;2�1=2P0zg
þ C2 cosf½ð�a;0 � �s;0Þ�s;2�1=2P0zg; (6)

with C1 and C2 depending on the position and angle of the
incident ray. Importantly, the period of xðzÞ

zperiod ¼ 2�

½ð�a;0 � �s;0Þ�s;2�1=2P0

(7)

is independent of the position of incidence, i.e., indepen-
dent of xðz ¼ 0Þ. As a result, for a normally incident plane
wave all rays intersect at a focal length that is a quarter of
zperiod.

We confirm the analytical results by comparing them to
finite-difference frequency-domain (FDFD) simulations
[19], which solves the underlying Maxwell’s equations
with no uncontrolled approximation. In FDFD, we calcu-
late the electromagnetic fields by solving a large sparse
linear system derived from Maxwell’s equations. This
method allows us to model materials using the measured,
tabulated permittivity for every wavelength, thus directly
taking into account both material dispersion as well as loss.
In all our simulations, we set the grid size to 1–2 nm in the
transverse x direction and 40–80 nm in the longitudinal z

PRL 103, 033902 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
17 JULY 2009

033902-2



direction. This enables us to model the very fine features of
the field at the metal-air interfaces inside the slits while
maintaining a reasonable simulation domain size.

Figure 1(d) shows the electric field intensity pattern of
the structure for an incident plane wave. The behavior is in
good agreement with the predictions from Hamiltonian
optics. The transverse focal spot is an order of magni-
tude smaller than the wavelength, since light is confined
mostly in the 100 nm wide center slit. This focusing occurs
over a length scale that corresponds to multiple wave-
lengths. Equation (7) predicts a focal length of 11:1 �m,
close to the simulated result. Past the focus, the pattern
expands again to the full width of the structure. This
pattern reproduces itself, albeit weakened by metallic
losses. Essentially, this metallic waveguide array acts as
a harmonic oscillator for light. This behavior is reminiscent
of a graded-index lens, albeit one with a more complex
dispersion relation.

In Fig. 1(e), we show the response when the aperiodic
structure is excited locally with a Gaussian profile that has
a full width at half maximum (FWHM) of half the wave-
length at the entrance surface. The resulting electric field
intensity profile corresponds quite well to the highlighted
ray from Hamiltonian optics, thus providing a direct visual
validation of the Hamiltonian optics in this nanoscale
system. (As a side note, this is not a Bloch oscillation,
since the edge of the Brillouin zone is never reached for
this ray.)

The focusing effect introduced can be achieved over a
wide range of frequencies. To operate at a longer wave-
length, one needs to use narrower slits and gold spacing to
enhance interaction between neighboring slits, since for a
fixed gold spacing and slit width the coupling between
waveguides decreases as the wavelength increases. We
demonstrate focusing at longer wavelengths of 2–4 �m
in Fig. 2, using a structure with a total of 41 slits that vary
linearly in width from 10 to 30 nm from the sides to the
center, separated by 20 nm gold.

The focal length can be controlled by tuning the
wavelength. In Figs. 2(a)–2(c) the focal length increases
from 12:1 �m (at 2 �m, "m ¼ �178:15þ 7:13i) over
19:0 �m (at 3 �m, "m ¼ �408:35þ 22:58i) to
25:9 �m (at 4 �m, "m ¼ �729:75þ 50:83i). The focus-
ing of 3 �mwavelength light to a 30 nm slit corresponds to
a focal spot of one-hundredth of a wavelength, as calcu-
lated using a FWHM criterion. At the focus, the z-directed
flux is 57.3% of the flux that has entered the structure
over the width of the structure at the entrance plane. The
transmission at the interface of the entrance plane is 89.2%;
thus most of the loss is due to the metal absorption. The
results again correspond well to Hamiltonian optics
[Figs. 2(d)–2(f)]. Equation (7) predicts focal lengths that
are slightly longer, but close to the ones from simulations:
13:8 �m, 21:0 �m and 28:1 �m. For this same structure,
we still observe focusing behavior at 10 �m wavelength
(not shown).
We also show the ability of this structure (from Fig. 2)

to perform lateral nanoscale steering of the focal spot.
Specifically, the focal spot can be steered laterally
from slit to slit, by tilting the incident plane wave.
Figures 3(a)–3(c) show an incident beam at 1:55 �m
wavelength ("m ¼ �104:31þ 3:68i) steered from the first
to the second and third slit, as counted from the center, by
varying the incident angles of, respectively, 0, 23 and
44 degrees. The focus spot moves away from the direction
in which the beam is tilted, as a result of the negative
refraction behavior of this system. These observations are
in good agreement with what Hamiltonian optics predicts
[Figs. 3(d)–3(f)].
From the theoretical point of view, our results indicate

the importance of Hamiltonian optics for understanding the
behavior of aperiodic nanoscale plasmonic structures. We
note that the success of Hamiltonian optics relies on the
large difference in terms of length scale between the opti-
cal beam size and the underlying structural periodicity. In

FIG. 2 (color online). Focusing in an aperiodic metallic wave-
guide array at longer wavelengths. FDFD simulations (a)–(c),
Hamiltonian optics (d)–(f).

FIG. 3 (color online). Lateral nanosteering with an aperiodic
metallic waveguide array. FDFD simulations (a)–(c),
Hamiltonian optics (d)–(f).
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traditional dielectric structures such as photonic crystals,
since the underlying periodicity is comparable to the wave-
length, Hamiltonian optics is applicable only for beams
with transverse dimensions much larger than the wave-
length [16,20,21]. In the structures considered here, how-
ever, the underlying structure has a periodicity that is much
smaller than the wavelength. Thus, in plasmonic structures,
Hamiltonian optics can be used to predict many of the
important characteristics that are at a single wavelength,
or even subwavelength scale.

In concluding, we briefly discuss losses in these struc-
tures. In general, losses will increase when slits are spaced
further apart. However, one cannot space the slits too
closely, since one needs to rely upon the metal region
between the slits to provide the capability for subwave-
length light confinement. Losses can be contained by keep-
ing the focal distance short. In periodic structures, there
exists a maximum angle of propagation � � 2CP, with C
the coupling constant between two adjacent waveguides
and P the period [18]. As an example, the calculated
maximum angles for the structure in Fig. 3 (1:55 �m light)
range from 5.7 to 6.8 degrees. For wide structures, the focal
length will be long and, consequently, losses will be sig-
nificant. Thus, the ideal operating mode of our structure is
to focus a wavelength scale beam into a deep-
subwavelength spot.

All wavelengths considered thus far in this Letter lie in
the infrared. The focusing effect in the visible is illustrated
in Fig. 4. The structure considered is the same as the one in
Fig. 1; the wavelengths are 800 nm ("m ¼ �22:72þ
0:76i), 632 nm ("m ¼ �10:73þ 0:79i), 580 nm ("m ¼
�7:38þ 1:09i) and 550 nm ("m ¼ �5:31þ 1:37i)
[Figs. 4(a)–4(d)]. Focusing is still observed for wave-
lengths down to 580 nm. The focusing effect, as measured
by the field intensity enhancement (as compared to an
incident plane wave), however, becomes less pronounced
at shorter wavelengths due to losses near the gold reso-
nance. Indeed, the field intensity enhancement in the center
slit at focus is 8.3 at 800 nm, 4.9 at 632 nm, and 2.4 at
580 nm. For even shorter wavelengths, no real focusing

(i.e., enhancement) is observed for this structure, as light is
attenuated faster than it is concentrated.
These novel planar structures, with their ability to focus

and steer over a wide range of wavelengths, can find
applications in wavelength division multiplexing, spectros-
copy, and lithography. For lithography purposes, for ex-
ample, one could envision truncating the structure at the
focal point and using the near field resulting from such
focal point. Since they are essentially one dimensional,
these structures can be deposited in a layer-by-layer fash-
ion, whereby the air slits are replaced by dielectric layers.
The presented design principles based on Hamiltonian
optics should be generalizable for more complex plas-
monic structures.
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FIG. 4 (color online). Focusing with the aperiodic metallic
waveguide array from Fig. 1 at shorter and visible wavelengths.
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