
Relativistic Shock Waves in Viscous Gluon Matter

I. Bouras,1 E. Molnár,2 H. Niemi,2 Z. Xu,1 A. El,1 O. Fochler,1 C. Greiner,1 and D.H. Rischke1,2

1Institut für Theoretische Physik, Johann Wolfgang Goethe-Universität,
Max-von-Laue-Straße 1, D-60438 Frankfurt am Main, Germany

2Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, D-60438 Frankfurt am Main, Germany
(Received 20 February 2009; published 15 July 2009; publisher error corrected 22 July 2009)

We solve the relativistic Riemann problem in viscous gluon matter employing a microscopic parton

cascade. We demonstrate the transition from ideal to viscous shock waves by varying the shear viscosity to

entropy density ratio �=s from zero to infinity. We show that an �=s ratio larger than 0.2 prevents the

development of well-defined shock waves on time scales typical for ultrarelativistic heavy-ion collisions.

Comparisons with viscous hydrodynamic calculations confirm our findings.
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In the 1970s, shock waves were theoretically predicted
to occur in collisions of heavy nuclei [1]. This phenomenon
has been experimentally investigated [2] and subsequently
observed [3]. Recently, jet quenching [4] has been discov-
ered in heavy-ion collisions at Brookhaven National
Laboratory’s Relativistic Heavy-Ion Collider (RHIC). In
this context, very exciting jet-associated particle correla-
tions [5] have been observed, which indicates the forma-
tion of shock waves in the form of Mach cones [6] induced
by supersonic partons moving through the quark-gluon
plasma (QGP). If true, it could give a direct access to the
equation of state of the QGP, because the Mach cone angle
is given by � ¼ arccosðcs=vjetÞ, where cs is the velocity of
sound of the QGP. The velocity of sound is related to the
equation of state via c2s ¼ dP=de, where P is the pressure
and e the energy density.

Shock waves can form and propagate only if matter
behaves like a fluid. The large measured elliptic flow
coefficient v2 [7] indicates that the QGP created at the
RHIC could even be a nearly perfect fluid. This is con-
firmed by recent calculations within viscous hydrodynam-
ics [8] and microscopic transport theory [9] which estimate
the shear viscosity to entropy density ratio �=s to be less
than 0.4 in order to not spoil the agreement with the v2

data. However, it is an important question whether the �=s
value deduced from v2 data is sufficiently small to allow
for the formation of shock waves.

In this Letter, we make an effort to answer this question
by considering the relativistic Riemann problem in viscous
gluon matter. Using the BAMPS microscopic transport
model (BAMPS denotes the Boltzmann approach of multi-
parton scattering) [10], we demonstrate the transition from
ideal shock waves with zero width, to viscous shock waves
with nonzero width, to free diffusion by varying the shear
viscosity to entropy density ratio �=s from zero to infinity.
We estimate the upper limit of the �=s ratio, for which
shocks can still be observed experimentally on the time
scale of an ultrarelativistic heavy-ion collision.

The initial condition for the relativistic Riemann prob-
lem consists of two regions of thermodynamically equili-

brated matter with different constant pressure separated by
a membrane at z ¼ 0, which is removed at t ¼ 0. Matter is
assumed to be homogeneous in the transverse ðx; yÞ direc-
tion so that the further evolution of matter becomes
(1þ 1)-dimensional. For a perfect fluid, i.e., � ¼ 0, this
problem has an analytical solution [11], given by the solid
curves in Fig. 1. For a thermodynamically normal medium,
there is a shock wave traveling into matter with the lower
pressure (on the right) with velocity vshock larger than the
velocity of sound cs. The region of constant pressure be-

FIG. 1 (color online). The solution of the Riemann problem.
At t ¼ 0, the pressure is P0 ¼ 5:43 GeV fm�3 for z < 0 and
P4 ¼ 2:22 GeV fm�3 for z > 0. The upper panel shows the
pressure and the lower panel the velocity at time t ¼ 3:2 fm=c.
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hind the shock wave is the so-called shock plateau. Here,
matter moves collectively with a constant velocity vplat as

shown in the bottom panel in Fig. 1. Simultaneously with
the creation of the shock wave, a rarefaction wave travels
with velocity cs into matter with the larger pressure (on the
left). For an ideal fluid, the solution of the Riemann prob-
lem is self-similar in the variable � ¼ z=t; i.e., the solution
as a function of � does not change with time.

The velocity of the shock front is determined from the
relativistic Rankine-Hugoniot-Taub equations [12] and is
given by [11]

vshock ¼
�ðP3 � P4Þðe3 þ P4Þ
ðe4 þ P3Þðe3 � e4Þ

�
1=2

; (1)

where P3 and e3 (P4 and e4) are the pressure and energy
density, respectively, on the left (right) side of the shock
front. For noninteracting ultrarelativistic gluon matter, the
equation of state is e ¼ 3P. For the situation depicted in
Fig. 1, vshock ¼ 0:645.

The extreme opposite of an ideal fluid (i.e., � ¼ 0)
is a gas of free-streaming particles (i.e., � ¼ 1). The
solution of the Riemann problem for free-streaming
particles is given by the short-dashed lines in Fig. 1, which
can also be calculated analytically [13]. From the solu-
tion for the single-particle distribution function fðx; pÞ,
one computes the energy-momentum tensor T�� ¼Rðd3p=EÞp�p�fðx; pÞ, where p� ¼ ðE;pÞ is the four-

momentum. The energy density defined as e ¼ u�T
��u�

is the largest eigenvalue of T�
� . The eigenvector u� is then

the four velocity in Landau’s definition [14]. In our case

u� ¼ �ð1; 0; 0; vÞ, where v ¼ T03=ðeþ T33Þ and � ¼
ð1� v2Þ�1=2. The pressure is defined as P ¼
����T

��=3, where ��� ¼ g�� � u�u� and g�� ¼
ð1;�1;�1;�1Þ is the metric tensor. For systems of mass-
less particles, T�

� is traceless and thus P ¼ e=3. In the free-
streaming case the characteristic structure of the solution
of the Riemann problem for an ideal fluid is completely
washed out, and a clear distinction between the shock wave
and the rarefaction fan is no longer possible.

In the following, we study the influence of the �=s ratio
on the formation and evolution of shock waves by solving
the Riemann problem with the parton cascade BAMPS
[10]. BAMPS is a microscopic transport model which
solves the Boltzmann equation p�@�fðx; pÞ ¼ Cðx; pÞ
for on-shell gluons with the collision integral Cðx; pÞ. In
this study, we consider only binary gluon scattering pro-
cesses with an isotropic cross section. We remark that,
although perturbative QCD (pQCD) favors small angles
in binary gluon scatterings, the use of an isotropic cross
section effectively implements pQCD gluon bremsstrah-
lung, which has a broader angular distribution due to the
suppression of soft collinear radiation [10].

In our calculations we use a constant �=s value. In order
to achieve this, we have to locally adjust the cross section
�, since the particle density n is not constant. The shear
viscosity � is given by � ¼ 4e=ð15RtrÞ [15], where the

transport collision rate Rtr ¼ n�tr ¼ 2n�=3 for isotropic
scattering processes [16]. n is calculated via n ¼ N�u�,

where N� ¼ Rðd3p=EÞp�fðx; pÞ. We obtain

� ¼ 2
5e�mfp; (2)

where �mfp ¼ 1=ðn�Þ is the gluon mean-free path. Binary

collisions imply that we cannot maintain chemical equilib-
rium. In this case, in kinetic equilibrium the entropy den-
sity is calculated approximately via s ¼ 4n� n ln�, where
� ¼ n=neq is the gluon fugacity measuring the deviation

from chemical equilibrium. For a nonvanishing shear vis-
cosity, the system will deviate from initial kinetic and
chemical equilibrium during the evolution [17]. Gluons
are regarded as Boltzmann particles, so that the number
density in thermal equilibrium is given by neq ¼ dGT

3=	2,

with dG ¼ 16 for gluons and T ¼ e=ð3nÞ denotes the tem-
perature. By sending �=s to zero, the cross section will be
unphysically large. However, it serves as a useful test of the
parton cascade in the ideal hydrodynamical limit.
In Fig. 1, we show the results for various �=s values as

computed with BAMPS, demonstrating the gradual tran-
sition from the ideal hydrodynamical limit to free stream-
ing of particles. Remarkably, the ideal solution is
reproduced to very high precision by the BAMPS calcu-
lation for a small �=s ¼ 0:001. In this sense, BAMPS can
compare with state-of-the-art numerical algorithms used to
solve the ideal hydrodynamical equations [11]. A larger
�=s value results in a finite transition layer where the
quantities change smoothly rather than discontinuously
as in the case of a perfect fluid. The width of the shock
front is proportional to the shear viscosity [18].
As seen in Fig. 1, a nonzero viscosity smears the pres-

sure and velocity profiles and impedes a clean separation of
the shock front from the rarefaction fan. A criterion for a
clear separation, and thus the observability of a shock
wave, is the formation of a shock plateau, as in the ideal-
fluid case. The formation of a shock plateau takes a certain
amount of time, as demonstrated in Fig. 2, where we show
the pressure and velocity profiles at different times for
�=s ¼ 0:1. Formally, we define the time of formation of
the shock plateau when the maximum of the velocity
distribution vðzÞ reaches the value vplat of the ideal-fluid

solution. From the bottom part of Fig. 2, we see that this
happens at t ¼ 3:2 fm=c. This agrees with what we ob-
tained in the bottom part of Fig. 1. From this figure we also
infer that for �=s > 0:1 a shock plateau has not yet devel-
oped at t ¼ 3:2 fm=c, whereas for �=s < 0:1 it has already
fully formed.
In order to understand the time scale of the formation of

a shock wave, we define the quantity [16,17,19]

K ¼ �mfp

L
; (3)

where L � tðvshock þ csÞ is the width of the region
bounded by the rarefaction wave traveling to the left and
the shock front moving to the right (in the ideal-fluid case).
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Note that �mfp is not constant; we approximate it by its

maximum value which is assumed on the low-pressure side
(the undisturbed medium) in front of the shock wave. The
quantity K can be viewed as a ‘‘global’’ Knudsen number
for the Riemann problem. K goes to zero at late times,
which implies that the medium behaves more and more
like an ideal system.

We find a scaling behavior for the solution of the
Riemann problem: The pressure profile Pðz; t;�=sÞ=P0

(and also the velocity profile) is only a function of � ¼
z=t and K, i.e., Pðz; t;�=sÞ=P0 ¼ Fð� ;KÞ, for a given ratio
P4=P0. The value of K at which the shock wave forms,
called Kf, is universal for a given P4=P0. With Eq. (2) we
obtain �mfp ¼ 10=ð3T4Þ�=s in the undisturbed medium

with the lower pressure. Thus, using the observation from
Fig. 2 that the shock wave forms at t ¼ 3:2 fm=c for
�=s ¼ 0:1, we find that Kf ¼ 0:053.

By inserting �mfp ¼ 10=ð3TÞ�=s into Eq. (3), the for-

mation time of shock waves is given by

tf ¼ 10

3

1

Kfðvshock þ csÞT
�

s
: (4)

Figure 3 shows the relation (4) with T ¼ 350 MeV and for
various initial pressure discontinuities P4=P0. The differ-
ence in slopes reflects the dependence of Kf and vshock on

the ratio P4=P0. For �=s ¼ 0:2 a shock will not be visible

until 6–7:2 fm=c, which most likely exceeds the lifetime of
the QGP at the RHIC. Vice versa, if shock phenomena are
discovered at the RHIC, this could be an indication that the
QGP has a small �=s ratio, probably smaller than 0.2. For a
more viscous QGP, no shock waves and thus no Mach
cones will be formed. In a relativistic heavy-ion collision,
the temperature is decreasing during the expansion. Thus,
according to Eq. (4), tf is even larger and shock waves may

be even harder to observe.
To confirm our results calculated with BAMPS, we solve

the Riemann problem within relativistic dissipative fluid
dynamics. To this end, we use the Israel-Stewart (IS)
equations [20] (see Ref. [21] for different approaches).
We neglect heat conductivity and bulk viscosity (thus
assuming local chemical equilibrium). In 1þ 1 dimen-
sions, the IS equations reduce to

@tT
00 þ @zðvT00Þ ¼ �@zðvPþ v ~	Þ; (5)

@tT
0z þ @zðvT0zÞ ¼ �@zðPþ ~	Þ; (6)

�@t ~	þ�v@z ~	¼ 1


	
ð	NS� ~	Þ� ~	

2

�
�þDln

�2

T

�
; (7)

where � � @�u
� and D � u�@�. The laboratory frame

energy and momentum density are given by T00 ¼ ðeþ
Pþ ~	Þ�2 � ðPþ ~	Þ and T0z ¼ ðeþ Pþ ~	Þ�2v, respec-
tively, while the system is closed by a massless gluon
equation of state. For vanishing shear viscous pressure ~	,
Eqs. (5) and (6) reduce to the equations of ideal
hydrodynamics.
The first-order theory of relativistic dissipative fluid

dynamics defines the viscous pressure algebraically by
the relativistic Navier-Stokes value 	NS ¼ �ð4=3Þ��
[14,22]. In the IS equations, the local shear pressure relaxes
to the Navier-Stokes value on a time scale comparable to
the mean-free time between collisions, given by the re-
laxation time 
	 ¼ 2��2, where �2 ¼ 3=ð4PÞ [20].
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FIG. 3 (color online). Formation time of shock waves as a
function of �=s.
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FIG. 2 (color online). The time evolution of the Riemann
problem for �=s ¼ 0:1 and the initial condition of Fig. 1.
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The IS equations (5)–(7) are solved numerically using
the viscous sharp and smooth transport algorithm
(vSHASTA) approach [23]. Figure 4 shows comparisons
between the results from BAMPS and vSHASTA calcula-
tions for �=s ¼ 0:01 and 0.2. We see perfect agreement for
�=s ¼ 0:01, whereas for the larger value of �=s ¼ 0:2
small deviations in the region around the shock front and
the rarefaction fan are found. The reason can be understood
considering the Knudsen number K� � �mfp�. The IS
equations contain terms of second order in K� [24].
However, at the shock front, the macroscopic scale over
which the fluid velocity varies is comparable to the micro-
scopic scale �mfp, such that K� � 1, and one would need
higher powers of K� in the IS equations to improve the
description. Wherever K� is large, the applicability of the
IS theory is questionable. Microscopic transport calcula-
tions do not suffer from this drawback.

In summary, employing the parton cascade BAMPS, we
have solved the relativistic Riemann problem. The transi-
tion from ideal-fluid behavior to free streaming is demon-
strated. Numerical results from BAMPS agree well with
those obtained from viscous hydrodynamical calculations.
We found that the formation of shock waves in gluon
matter with �=s > 0:2 probably takes longer than the life-
time of the QGP at the RHIC. Whether Mach cones from
jets [25] can be observed within nuclear collisions will be
studied in the future within the BAMPS approach.
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FIG. 4 (color online). The same as Fig. 1. Results obtained
from vSHASTA and BAMPS calculations are compared.
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