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1Dipartimento di Fisica ‘‘E. Fermi,’’ Università di Pisa and INFM CRS-SOFT, Largo Pontecorvo 3, 56127 Pisa, Italy
2Center for Nonlinear Science, University of North Texas, P.O. Box 311427, Denton, Texas 76203, USA

3Instituto de Alta Investigación, Universidad de Tarapacá-Casilla 6-D Arica, Chile
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We show that liquid crystals in the weak turbulence electroconvective regime respond to harmonic

perturbations with oscillations whose intensity decay with an inverse power law of time. We use the results

of this experiment to prove that this effect is the manifestation of a form of linear response theory (LRT)

valid in the out-of-equilibrium case, as well as at thermodynamic equilibrium where it reduces to the

ordinary LRT. We argue that this theory is a universal property, which is not confined to physical processes

such as turbulent or excitable media, and that it holds true in all possible conditions, and for all possible

systems, including complex networks, thereby establishing a bridge between statistical physics and all the

fields of research in complexity.
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The linear response theory (LRT) [1] is a theoretical tool
of general interest in physics. In spite of some criticism [2],
the experimental work done over a time span of about
52 years has not revealed any breakdown of the theory.
There is general agreement that the LRT is one of the
fundamental accomplishments of statistical physics. In
addition to affording an invaluable guideline for experi-
mental investigation in condensed matter, the LRT led Lee
[3] (see also [4]) to the definition of an inner operator
product and hence to the foundation of an operator basis
set that made it possible for him to design a rigorous,
efficient, and versatile approach to the relaxation of
Hamiltonian systems [5]. Unfortunately, no general theory
exists yet to extend in the same elegant manner the LRT
from equilibrium to nonequilibrium conditions [6].

The conventional LRT rests on two basic assumptions:
(i) The time evolution of the system variable �S is driven
by Hamiltonian operators (Liouville equation); (ii) The
external perturbation �P has the effect of making the
system depart from canonical equilibrium so weakly as
to render the linear response function �ðt; t0Þ identical to
the derivative of the correlation function Cðt; t0Þ [7],

�ðt; t0Þ ¼ d

dt0
Cðt; t0Þ; (1)

where Cðt; t0Þ ¼ Cðt� t0Þ is stationary. The response is

h�SðtÞi ¼ �
Z t

0
dt0�ðt; t0Þ�Pðt0Þ; (2)

with � < 1 being the interaction strength.
The recent literature on non-Poisson renewal processes

is raising increasing interest on the action of nonergodic
renewal events [8–10], with a wide set of applications,
ranging from quantum mechanics [11] to the brain dynam-

ics [12], thereby casting deep doubt on the possibility of
using the conventional LRT to study the effects of pertur-
bation in these cases. This is so for two main reasons: (i) It
is very difficult, if not impossible [13], to describe the time
evolution of the event-driven systems by means of
Hamiltonian operators (classical or quantum Liouville
equation); (ii) It is not yet well understood how to use
the linear response structure of Eq. (2) when a stationary
correlation function is not available, in spite of the fact that
some prescriptions already exist [14,15]. These are proba-
bly the reasons why Sokolov and Klafter [16,17] coined the
term ‘‘death of linear response’’ to denote the fading away
response of a complex system to a harmonic stimulus. This
interesting phenomenon raised the interest of other re-
searchers and also a debate on the best way to generate it
with surrogate sequences [18–20].
The purpose of this Letter is twofold: we give the first

experimental evidence of this interesting effect, task No. 1,
but we argue that surprisingly the LRT is in action also in
this case, task No. 2. We use real experiments on liquid
crystals, not only to support our theoretical arguments, but,
more importantly, to make our conclusions accessible to an
audience of readers as wide as possible. Our arguments do
not require a Hamiltonian formalism: this is not a limita-
tion, but rather a significant extension of the LRT that is
expected to apply not only to physical systems but to
neurophysiological and sociological processes as well
[21], thereby involving an interdisciplinary audience.
The guidelines for this wide audience of readers to

understand the new LRT are indicated by the following
three steps: preparation, perturbation, and experiment.
Preparation.—There are systems, and liquid-crystals

electroconvective belongs to this group, whose nonequi-
librium nature is determined by a cascade of renewal
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events with a rate RðtÞ decreasing in time as

RðtÞ / 1

t2��
; (3)

after a proper experimental preparation. Equation (3) is a
well-known prediction of renewal theory [22] that asso-
ciates the relaxation�ðtÞ / 1=t��1, with 1<�< 2, to the
production of events with a rate decreasing in time. In the
experiment studied in this Letter, RðtÞ is generated by the
dynamics of interacting defects that are prepared at a time
preceding the application of a weak perturbation to the
system S. In the absence of perturbation, h�Si is time
independent, in spite of the perennial out-of-equilibrium
condition represented by the ever drifting quantity RðtÞ
ensuing preparation.

Perturbation.—The external stimulus �PðtÞ, even though
not coupled to �S in a Hamiltonian way, nevertheless
affects the event dynamics according to the value of the
variable �SðtÞ, thereby generating an indirect effect on �S,
and consequently a time-varying bias h�SðtÞi.

Experiment.—The experiment on liquid crystals of this
Letter supports the following theoretical prescription

h�SðtÞi ¼ CRðtÞ cosð!tþ�Þ; (4)

with C and � as fitting parameters, and � of RðtÞ deter-
mined, as we shall see hereby, by the experiment itself.
Equation (4) admits a simple and intuitive explanation, as it
resembles the response to perturbation of Poisson pro-
cesses (stochastic resonance [21,23]) with the provision
of taking into account the fact that the cascade of events
generated by preparation fades away with time.

We study the response to harmonic perturbations of a
sample of a nematic liquid crystal (NLC) in a weakly
turbulent regime. The experimental setup we used is a
very simple and standard one [24]: The nematic (methoxy-
benzylidene butylaniline, or MBBA) is sandwiched be-
tween two glass plates coated with indium oxide to allow
electrical conductivity, and an AC potential of frequency
40 Hz is applied throughout the sample. The glass cell
containing NLC has a square base of 1:00� 0:01 cm side,
and a thickness of 25� 1 �m, leading to an aspect ratio of
400� 17, and the inner walls are rubbed in order to force
planar alignment [25]. This cell is observed through a
polarizer microscope: In this configuration, the transmitted
light intensity is locally dependent on the orientation field
of molecules because of the birefringent nature of NLC. In
all the experiments described here, the sample was kept at a
constant temperature of 21:000� 0:004 �C, and the illu-
mination lamp was stabilized by a photodiode-driven feed-
back circuit. When the applied voltage V reaches a critical
threshold VC ¼ 19:7� 0:1 V, an electro-hydrodynamic
instability sets up, and the molecules self-organize into
convective rolls known as Williams domains [26].
Increasing the electric field, several defects appear in this
pattern with complicated dynamics of defect births and

deaths [27]. For further higher voltages, other turbulent
regimes are observed, giving rise to the complex scenarios
reviewed in [28]. We focus our attention on electroconvec-
tive slightly above VC, in the so-called defect-mediated
turbulence. As already pointed out in [29], the dynamics of
the defects in this regime are regulated by their survival
probability, whose power-law behavior in turn affects the
slope of the observed 1=f� spectrum of fluctuations in the
transmitted light intensity, with � ¼ 3��. The system
variable �SðtÞ is therefore identified with this intensity,
proportional to the number of defects at time t [29], and
is measured by focusing the light coming from the micro-
scope to a photodiode, connected to a PC via a data
acquisition device.
The experimental observation of Eq. (4) is realized in

two steps. In the former phase, corresponding to V ¼
24:0� 0:1 V and �> 3, we bring the system to a fully
developed turbulent regime so as to destroy all the struc-
tures. After 20 s, we move to the latter phase, of defect-
mediated turbulence, by setting V1 ¼ 20:4� 0:1 V, yield-
ing, as we shall see hereby, � � 1:5. We realize the
external perturbation in the latter phase by modulating V.
The two phases generate different equilibrium values for
transmittivity. Therefore, in addition to (4), we must take
into account also the free regression to equilibrium

h�SðtÞi ¼ h�ð0Þi�ðtÞ þ CRðtÞ cosð!tþ�Þ: (5)

To derive the form of Eq. (4), we perturb the system with
cosð!tÞ and � cosð!tÞ, and we evaluate

��ðtÞ ¼ h�SðtÞiþ � h�SðtÞi�
2

(6)

where h�SðtÞiþ and h�SðtÞi� are the responses to cosð!tÞ
and � cosð!tÞ, respectively. Note that C is proportional to
� � �V=ðV1 � VCÞ ¼ 0:025, �V being the amplitude in
volts of the harmonic perturbation. To obtain ensemble
averages hi, we repeat the preparation and perturbation
procedures about 300 times for each measurement, and
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FIG. 1 (color online). �þðtÞ; green (continuous) line is t1��

with � ¼ 1:56.
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then we average. �þ and �� are shown in Figs. 1 and 2,
respectively. The result of Fig. 1 allows us to determine the
power index � (¼1:56� 0:03 in this case) [29]. Thus, the
very good agreement between the fitting formula of Eq. (4)
and the experimental results of Fig. 2 requires only two
fitting parameters, � and C.

After the accomplishment of task No. 1, let us now
address task No. 2: How to derive Eq. (4) from a LRT
theory? We make the natural conjecture that the new LRT
is realized by one of the two choices

�ðt; t0Þ ¼ d

dt0
Cðt; t0Þ; (7)

�ðt; t0Þ ¼ � d

dt
Cðt; t0Þ: (8)

The discussion of which between the two is the most
convenient choice was made in Refs. [14,15]), and in the
earlier work of [30] as well. Here, we show how to relate
these choices to RðtÞ of Eq. (4): An essential step of our
experimental-based assessment of the non-stationary LRT.
The LRT of a process whose dynamics are dominated by
events rather than being driven by the Hamiltonian of the
system S, which is unknown to us, must be based on the
information on the events produced by the system. The
central prescription is given by the age-specific rate of
event production [31]

gðtÞ ¼ c ðtÞ
�ðtÞ ; (9)

where c ðtÞ is the waiting-time distribution density, related
to�ðtÞ by�ðtÞ � R1

t c ðt0Þdt0, yielding, under the normal-

ization condition �ð0Þ ¼ 1,

�ðtÞ ¼ exp

�
�

Z t

0
gðt0Þdt0

�
: (10)

In Poisson processes, gðtÞ ¼ g is time independent so that
�ðtÞ ¼ expð�gtÞ. The fully turbulent regime produces a

high rate of events of this latter kind, but the transition to
the defect-mediated turbulent regime makes this high g
decrease in time.
The simplest model for inverse-power-law �ðtÞ is

gðtÞ ¼ r0
1þ r1t

; (11)

which, using Eq. (10), yields

�ðtÞ ¼
�

T

tþ T

�
��1

; (12)

with T � 1=r1 and � ¼ 1þ r0=r1.
It is important to notice that the renewal nature of the

process leads us to replace the deterministic function gðtÞ
with the stochastic rate rðtÞ defined by

rðtÞ ¼ gðt� tiÞ; (13)

where ti is the random time of occurrence of the last event
prior to time t. Thus, the survival probability� depends on
the time t0 at which observation begins

�ðt; t0Þ ¼
�Z t0

0
dt00Rðt00Þe�

R
t

t00 rð�Þd�
�

¼
Z t0

0
dt00Rðt00Þe�

R
t

t00 gð�Þd�

¼
Z t0

0
dt00Rðt00Þ�ðt� t00Þ: (14)

In the case where the laminar region between two consecu-
tive events, occurring at times ti and tiþ1, is filled with
values �S drawn from a distribution with finite width, it is
shown [32] that Cðt; t0Þ reduces to �ðt; t0Þ, hence

�ðt; t0Þ ¼ Rðt0Þ�ðt� t0Þ; (15)

�ðt; t0Þ ¼ c ðt; t0Þ ¼
Z t0

0
dt00Rðt00Þc ðt� t00Þ þ c ðtÞ; (16)

which show explicitly as the choices of Eqs. (7) and (8)
depend on RðtÞ. The authors of Refs. [7,16,17,19] followed
Sokolov [33], whose theory was proved [14,15] to yield the
choice of Eq. (15). The rationale for this choice is that the
perturbation does not influence the event occurrence time,
but only the drawing of the variable �S to fill the time
intervals between two consecutive events. We refer to this
theory as phenomenological LRT. It has been shown
[14,15] that the choice of Eq. (16), called dynamic LRT,
corresponds to the response being produced by the external
perturbation affecting the event occurrence time according
to the state of the system S.
The dynamic LRT yields [30]

��ðtÞ ¼ �

�ð�� 1Þ
cosð��2 þ!tÞ

ð!tÞ2��
: (17)

This result corresponds to the survival probability of
Eq. (12) and to the strict assumption that �SðtÞ is dichoto-
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FIG. 2 (color online). ��ðtÞ as a function of time. The almost
indistinguishable green (continuous) line is Eq. (5), with fre-
quency !=2� ¼ 0:05 Hz and fitting parameters C ¼ 0:41, � ¼
�0:20.
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mous. We have established that survival probabilities de-
parting from Eq. (12) in the short-time limit and a non-
strictly dichotomous �SðtÞ affect the values of � and C.
Thus, to keep the focus of this Letter on the universal
structure of Eq. (4), we consider both � and C as fitting
parameters.

We notice that the phenomenological theory would gen-
erate a correction to Eq. (2) under the form of a slow decay
process proportional to 1=t��1. This correction depends on
the first instants of the perturbation, and it would be
positive for h�SðtÞiþ and negative for h�SðtÞi� [34].
Figure 2, where �� oscillates around zero, does not reveal
any sign of this effect, thereby proving that the dynamic
LRT is in action in this case.

To complete the experimental proof of the nonstationary
LRT, we generate several perturbations with different in-
tensity, rescaling the results by perturbation amplitude. The
result is illustrated by Fig. 3: Curves are superimposed one
to the others, thereby proving that for small perturbations
(� & 0:05), the response of the system is linear with re-
spect to the perturbation intensity.

We notice that the empirical prescription of Eq. (4) is
compatible with both Eq. (8) and, for�> 1:5, with Eq. (7)
as well. The main conclusion is that the LRT is not dead,
and that rather it is a universal property of nature, valid in
both the case of Hamiltonian and stationary statistical
physics and in the challenging case of event-dominated
dynamics. The response of a complex system to a simple
perturbation fades away as a consequence of the fact that a
simple stimulus does not match the system’s complexity.
According to the Complexity Matching Principle [21], the
event-dominated LRT is expected to be compatible with a
steady response to a proper complex stimulus. The experi-
mental result of this Letter is therefore an encouraging
indication that the event-dominated LRT may have appli-
cation of surprising generality and of great interest, such as
the explanation of why the brain, as a complex system, is
sensitive to art [35] as a source of intellectual stimuli.
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J. T. Gleeson, Phys. Rev. Lett. 91, 264501 (2003).

[25] P. G. de Gennes and J. Prost, The Physics of Liquid
Crystals (Clarendon Press, Oxford, 1993).

[26] R. Williams, J. Chem. Phys. 39, 384 (1963).
[27] Example movies of the defects dynamics available at

http://mail.df.unipi.it/~allegrip/liquid_crystal.html.
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FIG. 3 (color online). ��ðtÞ=� with!=2� ¼ 0:07 Hz and � ¼
0:025, 0.031, 0.037, 0.044, 0.050.
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