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We consider two capacity quantities associated with bipartite unitary gates: the entangling and the

disentangling power. Here, we prove that these capacities are different in general by constructing an

explicit example of a qubit-qutrit unitary whose entangling power is maximal (2 ebits), but whose

disentangling power is strictly less. A corollary is that there can be no unique ordering for unitary gates in

terms of their ability to perform nonlocal tasks. Finally, we show that in large dimensions, almost all

bipartite unitaries have entangling and disentangling capacities close to maximal.
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Given two interacting quantum systems, a fundamental
issue is to quantify the strength of this interaction. The
question is straightforward if one is comparing two situ-
ations in which the particles and physical nature of the
interaction are the same; it is then easy to say one interac-
tion is stronger than the other. However, one would like
characterizations of interaction strength that go well be-
yond this. Particularly valuable are techniques that can
compare interactions of quite different types of system or
particles and different physical manifestations of the inter-
action. As well as the fundamental nature of this question,
the issue is clearly of interest to experimentalists who try to
create systems in interaction. Robust and general charac-
terizations of interaction strength provide an intellectual
background to compare different physical systems.
Quantum information theory has provided quite new in-
sights into this fundamental question. It is now understood
that one can talk about an interaction between systems as
an abstract notion, not needing to say how this interaction
arose. In particular, there has been considerable progress in
quantifying the strength of Hamiltonian and unitary inter-
actions [1–11]. The starting point was the theory of entan-
glement of quantum states; entanglement quantifies how
much nonclassical correlation the state embodies. For ex-
ample, for pure quantum states, we understand that the
entropy of entanglement is essentially the unique measure
of the entanglement in a state, and the ebit, the amount of
entanglement in a singlet state, is the natural unit of
entanglement. The amount of entanglement in a quantum
state is a notion that makes no reference to the physical
nature of the systems involved. In due course, there was the
realization that the strength of an interaction could be
quantified by how well it can create entanglement in states
[1–4]. Thus, for example, the entangling capacity of a
unitary interaction is defined as the maximum amount of
entanglement increase it can produce when acting on a
quantum state. For example, the unitary SWAP operation
between two qubits can create two ebits, and the CNOT

operation can create one ebit. A particularly attractive
aspect of this approach is that the entangling capacity

can be defined for bipartite systems of any size, and thus
it is meaningful to compare systems whose state spaces are
different sizes. While this is very attractive in that it
quantifies the strength of an interaction abstractly, it was
also understood that many other natural measures arise.
For example, one can ask how much entanglement is
needed to create a quantum operation [for the SWAP and
CNOT operations, this is two and one ebit, respectively [2–

4]]. But it was also realized that quantum operations can do
other things: they can also perform classical communica-
tion, for example. One can also ask how good interactions
are at disentangling.
The systems that were most well studied are systems of

two qubits. In this case, the situation seems particularly
simple. While there are many questions one could ask
about a unitary interaction, in fact, it seems to be the
case, roughly speaking, that when comparing two interac-
tions, when an interaction U is stronger than an interaction
V in one sense, it also was typically stronger in any other
sense as well [when these strengths could be computed]. A
particular case in point is the power to create or destroy
entanglement; here, one can prove that these two quantities
are the same for unitary interactions of two qubits. This
leads to the very attractive conjecture that in fact there is a
universal measure of the strength of quantum interactions.
The key upshot of the results of this Letter is that this
conjecture is not true. Our main technical result is that the
entangling power and disentangling power of unitary in-
teractions are unequal in general. This leads to a simple
corollary that there are unitaries, U1 and U2, for which U1

is stronger than U2 according to one natural measure of
their interaction strength but for which the ordering is the
other way around, according to another measure.
Formally, we consider a unitary transformation U acting

on a bipartite system shared by two observers Alice and
Bob. Alice has a system Hilbert space H A and Bob a
system Hilbert space H B. The unitary U ¼ UAB acts on
H A �H B. Alice (resp. Bob) also has an ancilla with
Hilbert spaceH a (resp.H b). We consider an initial state
j�ini on the full Hilbert space, then act with Ia �UAB � Ib
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to produce a final state

j�outi ¼ Ia �UAB � Ibj�ini: (1)

Let Eð�inÞ be the entanglement of j�ini, measured by the
entropy of its reduced state on the space H A �H a [12].
Then, the entangling power of U, which we denote E"ðUÞ,
is defined to be the maximum possible increase in the
entanglement as the input state varies:

E"ðUÞ ¼ sup
j�ini

½Eð�outÞ � Eð�inÞ�: (2)

Similarly, we define the disentangling power

E#ðUÞ ¼ sup
j�ini

½Eð�inÞ � Eð�outÞ�: (3)

Clearly, E#ðUÞ ¼ E"ðUyÞ. Note that by the results of
[9,10], E"ðUÞ is equal to the asymptotic (many copies of
U) capacity of U to generate entanglement and that opti-
mization over pure states is sufficient.

In this Letter, we prove that in general E"ðUÞ and E#ðUÞ
are not equal. We show this by constructing an explicit
example in 2� 3 dimensions. Recalling that for 2�
2-unitaries E"ðUÞ ¼ E#ðUÞ ¼ E"ðUyÞ [8], we note our ex-
ample occurs in the smallest possible dimension.

We have not said anything up to this point about the
relative dimensions of the system and ancilla Hilbert
spaces. It is known that for typical unitaries U, it is
essential to have ancillas in order to generate the maximum
possible entanglement using U. A well-known extreme
case is the two-qubit SWAP: it generates no entanglement
increase if Alice and Bob each only have the qubit on
which the SWAP acts, but it generates two ebits, the maxi-
mum increase for any unitary acting on two qubits, if Alice
and Bob each have an additional qubit ancilla. For an
arbitrary U, it is not known what size the ancillas need to
be to reach the maximum possible entanglement increase
(or decrease) for that unitary, or if indeed a maximizer
exists in finite dimension. Until now, this has been a major
stumbling block in the calculation of the nonlocal capaci-
ties of interactions [9,10].

Main result.—Our proof that the entangling and disen-
tangling power are unequal proceeds in two steps. First, we
show that if a unitary transformation has the largest pos-
sible entangling power for a unitary of that dimension, then
the local ancillas need only be as large as the local system
Hilbert spaces. Then, we exhibit an explicit 2� 3 unitary
whose entangling power is maximal (2 ebits) but its dis-
entangling power is strictly less than 2 ebits.

Lemma 1 Let U be a unitary acting on CA � CB

(A � B).—If U is maximally entangling [i.e., E"ðUÞ ¼
2 logA [13]], then in Eqs. (1) and (2), one may restrict to
ancillas of dimension a ¼ A and b ¼ B; in particular, the
supremum is a maximum, achieved using an input state of
the product form j�iniaABb ¼ j�iaA � j�iBb, with
j�iaA ¼ 1ffiffiffi

A
p P

A
j¼1 jjiajjiA a maximally entangled state on

a� A and some j�iBb on B� b.

Proof.—First, assume that for some ancillas of size a and
b, respectively, there is actually a maximizer j�ini. In the
supplementary information [14], we give a proof that
avoids this unwarranted assumption. Generally, subaddi-
tivity of entropy [15] implies the entanglement of the final
state Eð�outÞ satisfies

Eð�outÞ ¼ Sð�out
Aa Þ � Sð�aÞ þ logA: (4)

Also, the triangle inequality [15] implies that

Eð�inÞ ¼ Sð�in
AaÞ � Sð�aÞ � logA: (5)

[Notice that since the unitary U does not act on the ancilla
Hilbert space, Sð�aÞ is the same before and after the action
of U.] Thus, Eð�outÞ � Eð�inÞ � 2 logA, but since we
assumed that Eð�outÞ � Eð�inÞ ¼ 2 logA, we must have
equality in Eqs. (4) and (5).
Now we can calculate, using the above and the purity of

the state of four parties,

Sð�in
ABbÞ ¼ Sð�aÞ ¼ Sð�in

AaÞ þ logA ¼ Sð�in
BbÞ þ logA:

Thus, we must have �in
ABb ¼ 1

A IA � �in
Bb, and we may purify

the state �in
ABb by writing Alice’s ancilla Hilbert space in

the form H a1 �H a2 so that the full state is

j�iniaABb ¼ j�in
1 ia1A � j�in

2 ia2Bb: (6)

We may take a1 to have dimension A and j�in
1 iAa1 is

maximally entangled, and hence �a1 ¼ 1
A Ia1 .

We now consider the state after the action of U.
Equation (4) with equality means that �out

Aa ¼ 1
A IA � �a,

so that

�out
Aa1a2

¼ 1

A
IA � �a ¼ 1

A
IA � 1

A
Ia1 � �a2 : (7)

Hence, using Eqs. (6) and (7), we have

Eð�inÞ ¼ Sð�a2Þ and Eð�outÞ ¼ Sð�a2Þ þ 2 logA:

We may now see that there is a different initial state
yielding the same entanglement increase. We take exactly
the state (6) but now consider the situation in which the
ancilla particle a2 is transferred to Bob—let us relabel ~a ¼
a1 and ~b ¼ ba2. Thus, consider the initial state

j ~�ini~aAB~b ¼ j�in
1 i~aA � j�in

2 iB~b: (8)

This state has Eð ~�inÞ ¼ 0 and Eð ~�outÞ ¼ 2 logA.
The above description assumes that the supremum in (2)

is a maximum. The result may be proved without this
assumption; the proof is rather involved and may be found
in the supplementary information [14]. h
We thus conclude that if a unitary creates maximal

entanglement, it can do so by acting on a product pure
state between Alice and Bob. Furthermore, Alice’s state
may be taken to be maximally entangled between the sys-
tem and ancilla. If A < B may only conclude that Bob’s
initial state can be pure with an ancilla of dimension B.
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Of course, if A ¼ B, we may run the argument again,
with the roles of Alice and Bob interchanged, to show that
the initial state may be taken to be a product state between
Alice and Bob, with both maximally entangled with their
local ancillas. From this, it is not hard to show that, still
assuming that U is maximally entangling, it is also maxi-
mally disentangling. In other words, for A ¼ B,

E"ðUÞ ¼ 2 logA , E#ðUÞ ¼ 2 logA:

We now exhibit explicitly a 2� 3 unitary which can
entangle, but not disentangle, maximally

U2�3 ¼ �ijw00ih00j þ jw01ih01j þ jw02ih02j
þ jw10ih10j þ jw11ih11j � ijw12ih12j; (9)

with (for j ¼ 0, 1, 2)

jw0ji ¼ 1ffiffiffi
3

p ðj�ij0i þ!jj�ij1i þ!2jj�ij2iÞ;

jw1ji ¼ 1ffiffiffi
3

p ðj�?ij0i þ!jj�?ij1i þ!2jj�?ij2iÞ:

Here, ! ¼ e2�i=3 and j�i, j�i, j�i are the ‘‘trine’’ states

j�i ¼ j0i; j�i ¼ � 1

2
j0i þ

ffiffiffi
3

p
2

j1i;

j�i ¼ � 1

2
j0i �

ffiffiffi
3

p
2

j1i
with j�?i, j�?i, j�?i their orthogonal complements, re-
spectively, chosen with real coefficients.

U2�3 can create two ebits. Consider its action on

j�in
1 i ¼

1

2
ðj0iaj0iA þ j1iaj1iAÞ � ðj0iBj0ib þ j2iBj2ibÞ:

The subscript A denotes Alice’s system and a her ancilla,
similarly for Bob. Clearly, the initial state j�in

1 i has zero
entanglement between Aa and Bb. It is not difficult to
check that the final state j�out

1 i ¼ U2�3j�in
1 i has entangle-

ment of two ebits. Thus, U2�3 has the maximum possible
entangling power for any unitary on C2 � C3.

We now show that the disentangling power of U2�3 is
strictly less than 2 ebits. It will be convenient to analyze the

entangling power of Uy
2�3, the inverse of U2�3. If the

entangling power of Uy
2�3 were 2 ebits, then it could be

achieved, following Lemma 1, starting with a product
state: j�1iaA � j�2iBb, where j�1iaA is a maximally en-
tangled state of two qubits, j�2iBb an arbitrary pure state of
two qutrits. The proof will consist in showing that one
cannot achieve 2 ebits starting with a state of this form.

Thus, the most general input state we need to consider is

j�in
2 i ¼

1ffiffiffi
2

p ðj0iaj0iA þ j1iaj1iAÞ � ðj0iBj�0ib
þ j1iBj�1ib þ j2iBj�2ibÞ: (10)

Normalization of j�in
2 i means that h�0j�0ib þ h�1j�1ib þ

h�2j�2ib ¼ 1. Clearly, j�in
2 i has no entanglement between

Aa and Bb.

To compute the output state, we begin by rewriting the

inverse Uy
2�3 as

Uy
2�3 ¼ j0iAjv0iBh0jAh0jB þ

�
� 1

2
j0iAjv1iB

�
ffiffiffi
3

p
2

j1iAjv0
1iB

�
h0jAh1jB þ

�
� 1

2
j0iAjv2iB

þ
ffiffiffi
3

p
2

j1iAjv0
2iB

�
h0jAh2jB þ j1iAjv0

0iBh1jAh0jB

þ
� ffiffiffi

3
p
2

j0iAjv1iB � 1

2
j1iAjv0

1iB
�
h1jAh1jB

þ
�
�

ffiffiffi
3

p
2

j0iAjv2iB � 1

2
j1iAjv0

2iB
�
h1jAh2jB;

where (for j ¼ 0, 1, 2)

jvji ¼ 1ffiffiffi
3

p ðij0i þ!�jj1i þ!�2jj2iÞ;

jv0
ji ¼

1ffiffiffi
3

p ðj0i þ!�jj1i þ i!�2jj2iÞ:

Thus, the result of Uy
2�3 acting on (10) is

j�out
2 i ¼ Uy

2�3j�in
2 i

¼ 1

2
½j0iaj0iAj�00iBb þ j0iaj1iAj�01iBb

þ j1iaj0iAj�10iBb þ j1iaj1iAj�11iBb�;
where now

j�00i ¼
ffiffiffi
2

p �
jv0iBj�0ib � 1

2
jv1iBj�1ib � 1

2
jv2iBj�2ib

�
;

j�01i ¼
ffiffiffi
2

p �
�

ffiffiffi
3

p
2

jv0
1iBj�1ib þ

ffiffiffi
3

p
2

jv0
2iBj�2ib

�
;

j�10i ¼
ffiffiffi
2

p � ffiffiffi
3

p
2

jv1iBj�1ib �
ffiffiffi
3

p
2

jv2iBj�2ib
�
;

j�11i ¼
ffiffiffi
2

p �
jv0

0iBj�0ib �
1

2
jv0

1iBj�1ib �
1

2
jv0

2iBj�2ib
�
:

Now, in order for j�out
2 i to be maximally entangled, we

require that the four states j�00i, j�01i, j�10i, and j�11i
form an orthonormal basis. This puts constraints on the
j�ji, which, as we shall see, leads to a contradiction.

Bearing in mind the normalization of the j�ji, the four

equations expressing the condition that the vectors j�iji be
normalized are all the same, namely: h�1j�1i þ h�2j�2i ¼
2
3 , or equivalently, h�0j�0i ¼ 1

3 . The requirement that

h�00j�10i ¼ 0 thus leads to

h�0j�0i ¼ h�1j�1i ¼ h�2j�2i ¼ 1

3
: (11)

The requirement that h�01j�10i ¼ 0 yields

� h�1j�1i � h�2j�2i þ ð1� ffiffiffi
3

p Þ!2h�1j�2i
þ ð1þ ffiffiffi

3
p Þ!h�2j�1i ¼ 0:
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This has the unique solution h�1j�2i ¼ !
3 , and with the

Cauchy-Schwarz inequality and Eq. (11), this means that

j�2i ¼ !j�1i: (12)

The requirement that h�00j�01i ¼ 0 gives

�!2ð1þ ffiffiffi
3

p Þh�0j�1iþ!ð1� ffiffiffi
3

p Þh�0j�2iþ1

2
h�1j�1i

�!2

2
ð1þ ffiffiffi

3
p Þh�1j�2iþ!

2
ð1� ffiffiffi

3
p Þh�2j�1i�1

2
h�2j�2i ¼ 0:

Using Eqs. (11) and (12), this implies that

h�0j�1i ¼ �!

6
and h�0j�2i ¼ �!2

6
: (13)

But now, inserting Eqs. (11)–(13), we get h�00j�11i ¼ 2
3 �

0. Thus, there is no orthonormal choice of j�0i, j�1i, j�2i
for j�iji. This is the desired contradiction, and we con-

clude that E#ðUÞ< 2 ¼ E"ðUÞ.
Conclusion.—We have found an example of bipartite

unitary of smallest possible dimension such that its entan-
gling and its disentangling power are different. This is a
striking result as it shows that there can be no unique
ordering of unitary gates with respect to their various

capacities. For consider U1 ¼ U2�3 and U2 ¼ Uy
2�3: U1

has greater entangling capacity thanU2, butU1 has smaller
disentangling capacity than U2.

We have done numerical work, which, for U2�3, indi-
cates that 2� E#ðU2�3Þ � 0:06. Furthermore, we tried to
find the maximum difference E"ðUÞ � E#ðUÞ over all 2� 3
gates U, which seems to be � 0:13, and in general for a
random unitary, the entangling and the disentangling
power are not much different. [See Fig. 1.]

We can explain this partly by the concentration of
measure phenomenon [16] in large dimensions (which
usually however kicks in for relatively small dimensions).
Using arguments similar to those in [17], it may be shown
that a randomU (for large A � B or for Bmuch larger than

A) has entangling and disentangling power close to the
maximum of 2 logA (and therefore the difference between
these capacities is also likely to be small). We note that this
does not preclude the possibility that a particular unitary
could have very different entangling and disentangling
power. Indeed, independent work by Harrow and Shor
[18] shows that for large local dimensions d, it is possible
to construct a unitary for which E"ðUÞ � E#ðUÞ � logd.
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