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We study the effect of localized modes in lattices of size N with parity-time (PT ) symmetry. Such

modes are arranged in pairs of quasidegenerate levels with splitting �� exp�N=� where � is their

localization length. The level ‘‘evolution’’ with respect to the PT breaking parameter � shows a cascade

of bifurcations during which a pair of real levels becomes complex. The spontaneous PT symmetry

breaking occurs at �PT �minf�g, thus resulting in an exponentially narrow exact PT phase. As N=�

decreases, it becomes more robust with �PT � 1=N2 and the distribution P ð�PT Þ changes from log-

normal to semi-Gaussian. Our theory can be tested in the frame of optical lattices.
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Introduction.—Parity (P ) and time-reversal (T ) sym-
metries, as well as their breaking, belong to the most ba-
sic notions in physics. Recently there has been much
interest in systems which do not obey P and T symme-
tries separately but do exhibit a combined PT symmetry.
Examples of such PT -symmetric systems range from
quantum field theories to solid-state and classical optics
[1–9]. A PT -symmetric system can be realized in op-
tics, by creating a medium with alternating regions of gain
and loss, such that the (complex) refraction index satisfies
the condition n�ð�xÞ ¼ nðxÞ [6–9]. This condition im-
plies that creation and absorption of photons occur in a
balanced manner, so that the net loss or gain is zero.
Such synthetic PT metamaterials show unique character-
istics such as ‘‘double refraction’’ and nonreciprocal dif-
fraction patterns, which may allow their use as a new
generation of unidirectional optical couplers or left-right
sensors of propagating light [6]. In the paraxial approxi-
mation the classical wave equations reduce to a
Schrödinger equation with a fictitious time, related to the
propagation distance, and with the refraction index play-
ing the role of the potential. We use below the terminology
of the Schrödinger equation, while keeping in mind appli-
cations to optical systems.

A PT -symmetric system can be described by a phe-
nomenological ‘‘Hamiltonian’’ H . Such Hamiltonians
may have a unitary time evolution and a real energy
spectrum, although in general are nonhermitian.
Furthermore, as some parameter of H changes, a sponta-
neous PT symmetry breaking occurs, at which point the
eigenfunctions of H cease to be eigenfunctions of the
PT operator, despite the fact that H and the PT opera-
tor commute [1]. This happens because the PT operator is
not linear, and thus the eigenstates of H may or may not
be eigenstates of PT . As a consequence, in the broken
PT -symmetry phase the spectrum becomes partially or
completely complex. The other limiting case where both
H and PT share the same set of eigenvectors, corre-

sponds to the so-called exact PT -symmetric phase and the
spectrum is real.
In this Letter we investigate the spontaneous

PT -symmetry breaking scenario in a wide class of sys-
tems supporting localized states. Such states are ubiquitous
in macroscopic systems. They can reside on impurities or
at the edges of an otherwise perfect lattice of finite size.
Therefore, in order to understand the PT -symmetric
phase of a macroscopic system, it is imperative to consider
localized states. At the same time, we note that even 50
years after the seminal work of Anderson [10], localization
continues to be a thriving area of research, not only for
solid-state physics, but also to other fields including ultra-
cold atoms, acoustics, microwaves and classical optics. We
therefore expect that our study linking the newly developed
area of PT materials with the field of localization will
contribute to understanding fundamental aspects of mod-
ern physics.
Localization is particularly pronounced in one-

dimensional (1D) systems and has been studied exten-
sively in the past [11]. We show that in the case of
PT -symmetric lattices of size N which can support local-
ized modes due to disorder or impurities or even due to
boundaries (surface states), the mechanism that triggers the
transition from real to complex spectrum is level crossing
between a pair of modes having the smallest energy spac-
ing. Because of the P symmetry, this pair of states has a
double hump shape and the energy splitting between them
is �1 � expð�l0=�Þ where � is the localization length and
l0 is the distance between the two humps (for disordered
lattices l0 � N). We find that the value of the PT sym-
metry breaking parameter � at the transition point is
�PT � �1, thus indicating that the exact PT -symmetric
phase is exponentially small in the limit l0=� � 1. In
contrast, for l0=� � 1, we find that the smaller level
spacing scales as �min � 1=N2. This is also reflected in
the distribution P ð�PT Þ which changes from a log-normal
towards a semi-Gaussian as N=� decreases.
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Two PT -symmetric impurities.—It is instructive to start
with the simple example of a pair of PT -symmetric
impurities implanted into an otherwise perfect infinite
lattice. The system is described by the equation

� c nþ1 � c n�1 ¼ ðE� "nÞc n; (1)

where c n is the eigenfunction amplitude at site n, "n ¼ 0
for n � �l, and "�l ¼ ��� i�, with � and � being real
and positive. We are looking for the bound states:

c n ¼
8
><
>:

Aekn; n � �l
Bekn þ Ce�kn; �l � n � l
De�kn; n � l

(2)

with Re½k	> 0 and E ¼ �2 coshk. Matching the wave
function at the sites n ¼ �l, one obtains four equations
for the amplitudes A, B, C, D. Equating the determinant to
zero yields the transcendental equation for k:

sinhk ¼ �

2
� 1

2
½��2 þ ð�2 þ �2Þe�4kl	1=2: (3)

For � ¼ 0 and �l � 1, one finds two bound states with

energies E� ¼ E0 � 1
2�1, where E0 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ �2
p

is the

energy of a localized state on a single isolated impurity,
and �1 ¼ �ðlÞ ¼ ð2�2=jE0jÞe��l is the exponentially
small energy splitting term for the two-impurity problem.
The point we want to emphasize is that for �l � 1 already
an exponentially small � leads to complex values of k and
E, thus, breaking the PT symmetry. The mechanism for
this breaking is level crossing: as follows from Eq. (3),
when � reaches the value �PT 
 �e��l, the two (real)
eigenvalues become degenerate. For �> �PT they branch
out into the complex plane, displaying near the branch

point the characteristic behavior Im½E�	/�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2��2

PT

q
.

This square-root singularity seems to be a generic feature
of the PT -symmetry breaking.

The eigenfunctions of the above Hamiltonian also
undergo characteristic changes as � increases. A finite �
breaks the P symmetry of the Hamiltonian but, as long as
� < �PT , the PT symmetry of the eigenfunction is pre-
served, so that c �

n ¼ �c�n. This implies that the ‘‘dipole
moment’’, D ¼ P

N
n¼�N njc nj2, of an eigenstate is zero.

For �> �PT the eigenstates acquire a finite dipole mo-
ment. Below we shall use D as one of the signatures of the
PT -symmetry breaking.

The disordered PT -symmetric chain.—We consider
next a 1D disordered PT -symmetric chain and demon-
strate that under a disorder increase, the PT -symmetric
phase is gradually destroyed. For sufficiently strong disor-
der this phase shrinks to an exponentially narrow region,
even for a comparatively small system.

The chain is described by the Hamiltonian of Eq. (1),
where now all "n are random complex numbers, "n ¼
�n þ i�n, with the constraint "n ¼ "��n. One can envisage
various possibilities for randomness, either in �n or �n, or
both. Below we present results for the case where �n (for

n � 0) are uniformly distributed on the interval [��=2;
�=2] and �n ¼ � ¼ const (for n � 1). It is crucial, for the
PT symmetry, to implement the constraint�n ¼ ��n and
�n ¼ ���n (the latter implies �0 ¼ 0). This constraint
introduces a peculiar long-range correlation. To clarify
the picture we start with the Hermitian limit � ¼ 0, and
assume a long chain, such that even eigenstates in the band
center are localized, i.e., their localization length is smaller
than the system size (2N þ 1). Imagine for a moment that
the chain is cut in half, at its center n ¼ 0. Then a typical
state in one half of the chain would be localized, with some
localization length �, far away from n ¼ 0, say, near site
l � 1. This state has its counterpart in the other half of the
chain, near site�l. In the full, connected chain this pair of
states has an exponentially small overlap, at the center of
the chain, yielding two real eigenstates of the entire chain.
Each of these eigenstates (one symmetric, the other anti-
symmetric) has two peaks, near the sites n ¼ �l. The
energy splitting between the two eigenvalues is exponen-

tially small, �ðlÞ ’ e�2l=�, in complete analogy with the
example of the two impurities in a perfect chain.
Thus, the eigenstates in a P -symmetric disordered chain

are organized into pairs (doublets) of energy splitting �1 <
�2 < � � � . The energy splitting between the two states of a
doublet is exponentially small, while the energy separation
between consecutive doublets is much larger, of the order
of level spacing,�, in half of the chain. The pair associated
with the minimum splitting, �1 is likely to originate from
states localized far away from the origin of the chain (n ¼
0) and with energies at the band edges (small �). As � is
switched on, the eigenstates of each pair will initially
preserve their PT -symmetric structure [see Figs. 1(a)
and 1(b)]. At � ¼ �PT ’ �1, the two levels associated
with �1 will cross, breaking the PT symmetry [see
Fig. 2(a)]. As � > �PT these modes cease to be eigen-

states of the PT operator. Instead, the weight of each of
them is gradually shifted towards one of the localization
centers. An example of such pair associated with �1 is
reported in Figs. 1(a) and 1(c). For larger � the next
doublet, with splitting �2 will come into play, creating a
second pair of complex eigenvalues for � ’ �2 [see
Fig. 2(a)], etc.
The above qualitative considerations apply to a single,

realization of the random potential. A full theory must be
formulated in statistical terms and deal with probability
distributions. For instance, the critical value �PT at which
the PT symmetry is broken, fluctuates from one realiza-
tion to another and the appropriate question pertains to the
distribution Pð�PT Þ. As has been argued above [see inset
of Fig. 2(a)], in the strong disorder regime �PT 
 �1, and
thus the problem reduces to the study of the distribution
P ð�1Þ. There are several sources of fluctuations in �1:
fluctuations in the position and energy of the relevant
localized states, as well as what can be termed ‘‘fluctua-
tions in the wave functions’’. By this we mean that a
localized wave function exhibits strong, log-normal fluc-

PRL 103, 030402 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
17 JULY 2009

030402-2



tuations in its ‘‘tails’’, i.e., sufficiently far from its local-
ization center [12]. This latter source of fluctuations ap-
pears to be the dominant one and it immediately yields a
log-normal distribution for �1 [see Fig. 2(b)], since �1 is
proportional to the overlap integral between a pair of
widely separated and strongly localized states.

The aforementioned scenario of bifurcations, i.e., of the
consecutive branching of pairs of eigenvalues into the
complex plane, can also be made more quantitative.
Consider, the separation (on the � axis) between the first
bifurcation (� ¼ �PT ) and the next one. This separation,
��, is proportional to (�2 � �1). Assuming that localized
states, associated with the doublets, are randomly located,
and ignoring for the moment fluctuations in the energy of
these states, one immediately obtains a Poisson distribution
for s � log�2 � log�1, with the average spacing 2=� on
the log� scale between the bifurcation points [see inset of
Fig. 2(b)]. This result, with � being replaced by an appro-
priate average, remains valid also when we account for the
energy fluctuations.

Our considerations can be extended to the N=� � 1
limit, when the states responsible for �1 are extended
over the entire chain. In this case the picture of doublets
with exponentially small energy splittings is not valid and
�PT becomes of the order of the minimal level spacing,
�min, in the corresponding Hermitian problem. This state-

ment follows from perturbation theory, with respect to �.
The unperturbed (i.e., � ¼ 0) energy levels are real, and
are separated by intervals of order 1=N2 at the band edges
(at the center of the band the separation is of order 1=N), so
that�min ’ 1=N2. Finite � leads to level shifts proportional
to �2 (the first order correction vanishes due to PT
symmetry) and for � ¼ �PT ’ �min the perturbation the-
ory breaks down, signaling level crossing and the appear-
ance of the first pair of complex eigenvalues. Thus, the
energy scale for the PT threshold in the N=� � 1 limit
(�PT ’ 1=N2) widely differs from that for N=� � 1

(�PT ’ e�2N=�). However, the ‘‘bifurcation scenario,’’
with characteristic square-root branches for the complex
eigenvalues, holds in both cases (again, with the com-
pletely different energy scale for the intervals between
the consecutive bifurcations). Our numerical results pre-
sented in Fig. 3(a) are in perfect agreement with these
considerations.
We study now the distribution Pð�PT Þ in the limit

N=� � 1. We invoke perturbation theory with respect to
the perfect lattice. The perturbative scenario, indicates that
weak disorder will cause a small shift of the energy levels.
Thus the new level spacing becomes�min ���, where the
sign þ (�) refers to the upper (lower) band edge. Regard-
less of the sign of ��, the minimal level spacing (in first
order perturbation theory) is

� ¼ �min � j��j � �min � 4

2N þ 1

��������
XN

n¼1

An�n

��������; (4)

with the coefficients An ¼ sinð�ðnþNÞ
2Nþ1 Þ sinð3�ðnþNÞ

2Nþ1 Þ. If �n

were Gaussian distributed, it would be immediately clear
that the distribution of �, Pð�Þ, is a semi-Gaussian for

FIG. 2 (color online). (a) Bifurcations for the dipole moment
D and for the imaginary part ImE of energy levels for a
PT -symmetric 1D chain with � ¼ const and �n given by a
box distribution [� �

2 ;
�
2 ] for N=� � 1. The first two bifurca-

tions (corresponding to splittings �1 and �2) are shown. The
square-root behavior at the branching point (see text) is indicated
with dashed cyan lines (on top of the ImE lines). Inset: a linear
relation between �1 and �PT is evident for almost 10 orders of
magnitude. (b) Distribution P ðxÞ of x � ðlog�1 � hlog�1iÞ=�
(� is the standard deviation) for various disorder strengths �. In
the limit of large � the distribution becomes log-normal. Inset:
The distribution P ðsÞ of s � logð�2Þ � logð�1Þ reported in a
semilogarithmic plot. A Poisson distribution is approached as �
increases.
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FIG. 1 (color online). Pairs of exponentially localized modes
in a 1D chain with PT -symmetric disorder [(a)–(c)] and surface
states in a PT -symmetric periodic chain (d) yielding the small-
est energy splittings �1 for � ¼ 3. For � < �PT (b) the two
eigenfunctions [blue (dark gray) and red (medium gray); the
imaginary part is shown in the inset] are complex but PT
symmetric and their absolute values remains equal and symmet-
ric [coinciding on the black line in (a)]. For � > �PT (c) the
eigenfunctions (magenta and cyan) are no longer PT symmetric
and shift their weight towards separate sides of the chain (a).
(d) Surface states [blue (dark gray) and green (light gray)]
showing exponential localization. The red (medium gray) dashed
[solid] lines in (a) [(d)] are guides to the eye, pointing out the
exponential localization.
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� <�min. This should remain approximately true also
for the box distribution, employed in our numerics, if
the number of terms in the sum is sufficiently large.
Figure 3(b) confirms this expectation.

Periodic PT -symmetric potentials.—Let us briefly ad-
dress the problem of PT -symmetry breaking for a peri-
odic complex potential. This question has been raised in
[6], for a potential VðxÞ ¼ 4ðcos2xþ iV0 sin2xÞ, where it
was argued that the critical value, of the PT threshold was
V th
0 ¼ 1=2. The presence of the real part, Acos2x (A � 0),

is crucial for this result. Indeed, it was pointed out in [6]
that a purely imaginary periodic potential, VðxÞ ¼
iV0sin

2Nþ1ðxÞ, treated in Ref. [2], has ‘‘zero PT thresh-
old’’, i.e., it cannot have an entirely real spectrum. Another
example of a periodic potential with zero PT threshold
was provided in Ref. [3].

In a periodic system of finite extent one usually encoun-
ters localized states (surface states) at the boundaries of the
sample [13]. We have found that these states, which were
not addressed in Ref. [6], are crucial for the correct evalu-
ation of the PT threshold in a finite system. We illustrate
the importance of the surface states by taking the example
of a tight binding periodic potential, with three sites per
unit cell. The Hamiltonian is still that of Eq. (1), but with
on-site energies: "n¼3l ¼ 0; "n¼3l�1 ¼ �� i� where l ¼
0;�1;�2; . . . ;�N=3. For � ¼ 0 (and N ! 1) the spec-
trum displays two energy gaps, whose width (for� � 1) is
2�=3. The existence of gaps suggests, in analogy with [6],
that the PT -symmetric phase in this model will exhibit
some robustness, as long as � is small (� � �). This
expectation, however, is not born out due to the surface
states. For � ¼ 0 there is a pair of surface states, exponen-
tially decaying away from the sites�N. For large but finite
N these surface states have a small overlap near the center
of the chain n ¼ 0, yielding a doublet with an exponen-
tially small energy splitting. In complete analogy with the
two-impurity problem, already an exponentially small � ’
e��N will therefore break the PT symmetry. This ex-

ample shows that the N ! 1 limit can be quite subtle, as
far as the PT threshold is concerned. If one starts directly
withN ¼ 1, one obtains a finite PT threshold, �PT ’ �.
If one starts, however, with a large but finite N and then
takes theN ! 1 limit (which is the correct physical limit),
then one ends up with �PT ¼ 0, due to the existence of
surface states.
Conclusion.—We have studied a 1D PT -symmetric

chain with disorder. The PT -symmetric phase turns out
to be very fragile. For a sufficiently long chain, this phase
exists only for exponentially small values of the imaginary

part of the potential �PT ’ e�N=� beyond which the PT
symmetry is broken (here N and � are the system size and
the localization length, respectively). Our model can be
extended in various directions. For instance, we have
checked that our main results do not change if randomness
is introduced in both the real and the imaginary parts of the
potential. We have also briefly discussed the periodic PT
potential and pointed out the importance of surface states
in breaking PT symmetry. Our main conclusion is within
a generic 1D system which supports localized modes, the
threshold for PT -symmetry breaking is exponentially
approaching zero with increasing size.
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FIG. 3 (color online). (a) Same as in Fig. 2(a) but now for
‘‘weak’’ disorder N=� � 1. The same bifurcation scenario is
observed. (b) The distribution P ð~�Þ of the rescaled minimal
energy split ~� ¼ ��=� (� is the standard deviation), for various
disordered strengths, all of them being in the weak localized
regime. The distribution has an upper cutoff at ~� ¼ 0. A
Gaussian distribution is shown also by a red dashed line. Inset:
The same data in a semilogarithmic manner vs ~�2.
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