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When a layer of granular material is vertically shaken, the surface spontaneously breaks up in a

landscape of small Faraday heaps that merge into larger ones on an ever increasing time scale. This

coarsening process is studied in a linear setup, for which the average life span of the transient state with N

Faraday heaps is shown to scale as N�3. We describe this process by a set of differential equations for the

peak positions; the calculated evolution of the landscape is in excellent agreement with both the

experiments and simulations. The same model explains the observational fact that the number of heaps

towards the end of the process decreases approximately as NðtÞ / t�1=2.
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Introduction.—When a bed of fine dry sand is vertically
vibrated or tapped, its initially flat surface turns into a
landscape of small heaps, which in the course of time
coarsen into larger ones. This phenomenon, known as
Faraday heaping, is one of the most celebrated and beau-
tiful examples of the effect of air on granular matter [1–3]
and in a broader context, provides a prime example of
spontaneous pattern formation in a dynamical system out-
side of equilibrium [4].

The dynamic stabilization of a single heap (last snapshot
of Fig. 1) is well understood: The outward avalanches in
the upper layers are balanced by the inward motion of the
deeper layers (induced by the airflow through the vibrating
bed [2,3]), together forming the convective flow of parti-
cles known as Faraday circulation. By contrast, the merg-
ing of small heaps into larger ones—the coarsening process
(Fig. 1)—is much less understood, and quantitative experi-
ments have been scarce [5,6].

In the present study we introduce a model for the coars-
ening behavior, validated by experiments and detailed
numerical simulations. This threefold approach leads to
the identification of the average life span �N of the N-heap
state as the proper coarsening quantity. It is proven to scale,
in our 1D setup, as �N / N�3.

Experiments.—A glass box of dimensions L�H �
D ¼ 300� 100� 2:1 mm3 is vertically vibrated using a
sinusoidal driving with frequency f ¼ 6:25 Hz and ampli-
tude a ¼ 10 mm. The box contains 19.44 grams of spheri-
cal glass particles (� ¼ 2500 kg=m3) with an average
diameter of d ¼ 0:5 mm; i.e., the height of the granular
bed in rest is about 31 particle diameters. The above choice
of parameters means that we operate at a dimensionless
acceleration � ¼ að2�fÞ2=g ¼ 1:6, so that the bed de-
taches from the vibrating bottom during part of the driving
cycle [7]. This is necessary, since the heaping effect relies
on the air flowing into (and out of) the void between

bed and bottom, with the bed acting as a porous piston
[3]. In addition, the dimensionless energy input E ¼
ða2�fÞ2=ðgdÞ ¼ �a=d must be sufficiently high in order
to sustain the convective circulation of grains within the
heaps [3,5]. Our choice of a=d ¼ 20 gives E ¼ 36, which
lies well above the required threshold value of E � 2:0þ
1:26a=d ¼ 27 [5] and thus guarantees a smooth coarsening
process.

FIG. 1. Coarsening of a vertically vibrated 1D granular bed, as
recorded in our experiments. It takes roughly two minutes to
evolve from a flat landscape to a single Faraday heap. Every
image is taken at the same point during the vibration cycle, when
the container moves upward and the bed is pressed against the
floor.
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Where Fig. 1 shows snapshots from a typical experi-
mental run, Fig. 2(a) contains the time evolution for a
second run. In order to get sufficient statistics to determine
the mean life span of the N-heap state, 19 runs were
performed. Figure 3 shows the number of heaps NðtÞ (a
decreasing step function) for all 19 experiments [8]. The
inset shows the averaged data on a log-log scale, suggest-
ing that NðtÞ / t�� with � close to 0.5. We do not find the
exponential decay reported by van Doorn and Behringer
[5]. Presumably the exponential behavior is a critical case,
since it was only observed in experiments for which the
energy input E was around the value that is minimally
required for heaping. When E exceeded this threshold, as
in our case, also van Doorn and Behringer found a clear
deviation from exponential decay.

Numerical simulations.—We performed numerical
simulations on the same system. Our code combines granu-
lar dynamics (GD) and computational fluid dynamics
(CFD) [9]: The GD part calculates the particle trajectories
from Newton’s law, with the particle-particle interactions
being given by a 3D soft sphere collision model including
tangential friction, while the CFD part evaluates the full
Navier-Stokes equations for the interstitial air by a finite
difference method. The two parts of the code are coupled to
account for the effect of the air on the particles, and vice
versa. The position and height of the peaks at t ¼ 4 s in the
experiment of Fig. 2(a) are used to create the starting
condition for the numerical simulation [Fig. 2(b)]. The
excellent correspondence confirms that any unwanted
side-effects in the experimental setup (due to, e.g., mis-
alignment, humidity, or static electricity) have been suc-
cessfully kept to a minimum. Apart from the heap patterns,
the simulations can provide detailed information that can-
not be readily obtained from the experiments, and which
will presently be used in setting up the analytical model.

Analytical model.—We will derive equations for the
time evolution of the position xiðtÞ and height ziðtÞ of a
typical heap (see Fig. 4), which are then combined to
determine the evolution of the whole system. This model
is based on observations that have been discussed in detail
in [3], namely, the constancy of the slope angle, the fact
that the horizontal motion of grains within a heap results
from the pressure gradient just below its slopes, and the

observation that a heap as a whole moves due to an
asymmetry between its left and right slope lengths.
A key ingredient of our model is that the slope angle is

the same for all heaps (� ¼ 18:5� in our experiments) and
remains constant during the entire coarsening process [3];
see Figs. 1, 2(a), and 2(b).
A second ingredient (from the simulations) is that when

the bed detaches from the vibrating plate, the lines of
constant air pressure run parallel to the slopes just below
the surface, whereas deeper inside the heap the equal
pressure lines flatten out [3]. So below a certain depth h
the horizontal component of the air drag becomes negli-
gible, which means that the total horizontal drag force Fx

on the left part of the heap scales with the slope length l.
This force acts during a small fraction of the driving cycle
�t1 (see [3]) and as a result, the particles in the left dark
grey triangle in Fig. 4 (representing a mass ml / l2) are set
in motion. Analogously, for the right side of the heap the
force is proportional to r and will be in the negative x
direction. Using conservation of momentum, the total ef-

FIG. 2 (color online). Evolution of the heap pattern from t ¼ 4 s to 18 s obtained by (a) experiment, (b) simulation, and (c) the
analytical model. A stroboscopic video of the evolving heap pattern as obtained by experiment, simulation, and model is supplied in
the supplementary material in [11].

FIG. 3. Experiment: Number of heaps N as a function of time.
The black dots are the measured times when the N-heap state
gives way to the (N � 1)-state; the open circles represent the
average over all 19 experimental runs. No data for N ¼ 2 are
shown [8]. Inset: The averaged data on a doubly logarithmic
scale reveals no clear scaling behavior for NðtÞ, which is ex-
plained in the text. The solid line corresponds to the approxi-
mation Eq. (7).
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fective mass (/l2 þ r2) acquires a horizontal velocity ux /
�t1ðl� rÞ=ðl2 þ r2Þ. This velocity is maintained during a
considerable fraction of the vibration cycle �t2, until the
heap collides again with the vibrating plate [3]. So during
the period of each vibration cycle,�t ¼ 1=f, the top of the
heap will be displaced over a distance �x ¼ ux�t2. Since
�t1 and �t2 do not change during a single realization of the
experiment, the time rate of change of the horizontal
position x of the top of the heap (on a time scale much
larger than the duration of a cycle) is thus given by

dx

dt
¼ C

l� r

l2 þ r2
; (1)

with C a constant that can be determined from experimen-
tal or simulation data (cf. Fig. 5).

To derive an analogous equation for the change of the
heap height z, we note that the mass in a heap remains the
same—in good approximation—from one cycle to the
next. This is because the main flow of material is directed
away from the valleys, towards the center of each heap, so
there is hardly any mass being exchanged through the
vertical lines at the valley positions. Thus the total area
contained in a heap at time t, AðtÞ ¼ zðlþ rÞ � 1

2 �
tan�ðl2 þ r2Þ, will still be the same at time tþ �t, indi-
cated by the dashed profile in Fig. 4. Setting AðtÞ ¼ Aðtþ
�tÞ [the latter with z ! zþ�z, l ! lþ �x, and r ! r�
�x], we obtain in the limit of �x, �z ! 0 the desired
equation for the height z:

dz

dt
¼ tan�

l� r

lþ r

dx

dt
¼ C

tan�ðl� rÞ2
ðlþ rÞðl2 þ r2Þ : (2)

To complete the model, we use the fact that in each
cycle, after the heap has shifted, avalanches relax the slope
angles to the value� again. This leads to a relocation of the
ith valley (between peak fxi; zig and fxiþ1; ziþ1g) such that
its horizontal position �xi is given by

�x i ¼ 1

2
ðxiþ1 � xiÞ � 1

2 tan�
ðziþ1 � ziÞ: (3)

The change of area due to this relocation of the valleys (the
small grey triangle in Fig. 4) is of second order in dx and
therefore in dt. It thus vanishes in the limit dt ! 0 and the
total mass in the system is conserved.
The model contains one parameter C, which sets the

absolute time scale of the coarsening process. It depends
on particle size and density, gravity, and viscosity, as well
as on the vibration parameters � and a=d, keeping pace
with the Faraday circulation velocity (see [3]). However,
keeping the above parameters fixed, C is simply a constant
and its value can be determined as in Fig. 5. With C given,
one can numerically solve the model equations; we use the
experimental peak positions xiðtÞ, ziðtÞ at t ¼ 4 s to define
our initial condition. The solution [Fig. 2(c)] is seen to
match the experimental and simulated patterns very well.
We conclude that our model accurately captures the essen-
tial features of the process.
Mean life span of the N-heap state.—The model is

ideally suited to study the scaling behavior of the coarsen-
ing process. It allows us to start with an arbitrarily large
number of heaps (which in experiment would require a
forbiddingly long box) and moreover, to perform thou-
sands of different realizations to improve the statistics. In
Fig. 6 we show both the average number of heaps NðtÞ as a
function of time (inset) and the mean life span �N of the
N-heap state as a function of N. The latter is defined as the
average time that elapses from the moment the system
switches from N þ 1 to N heaps until the switch from N
to N � 1 heaps. The black circles represent the average

FIG. 5. Validation of Eq. (1) from the simulation results in
Fig. 2(b). The slope of the fitted line gives the factor C ¼ 0:2�
10�3 m2=s. The data in this figure are taken from the eight heaps
in Fig. 2(b), with each heap being indicated by a different
marker.

FIG. 6. Mean life span of the N heap state �N as a function of
the number of heaps N. The grey circles indicate the experi-
mental data. The black circles indicate the data averaged over
10 000 runs of the model starting with 100 initial heaps. Inset:
Number of heaps as a function of time (cf. Fig. 3).

FIG. 4. Part of a typical heap pattern, indicating the key
parameters used in the coarsening model. The dashed profile
indicates the position of the heap after one time step dt.
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over 10 000 runs of the model, each run starting out from
N ¼ 100 heaps with slope lengths that are uniformly dis-
tributed between 0 and L=100 [10]. For �N we see a clear
power-law scaling �N / N�3 over the full two decades of
N, and once more an excellent agreement between model
and experiment in the final decade N ¼ 10; . . . ; 3. The
average number of heaps however (inset) does not exhibit
global power-law scaling. So not NðtÞ, but �N is the natural
quantity to analyze from a theoretical point of view.

Explanation of the scaling law.—How does �N / N�3

follow from the model? To answer this, we rewrite
Eqs. (1)–(3) in terms of the previously introduced left
and right slope lengths li ¼ xi � �xi�1 and ri ¼ �xi � xi.
After some algebra this leads to

dli=dt ¼ fðli; riÞ � fðli�1; r�1Þ;
dri=dt ¼ fðri; liÞ � fðriþ1; liþ1Þ;

(4)

where the function f is given by

fðu; vÞ ¼ C
uðu� vÞ

ðu2 þ v2Þðuþ vÞ : (5)

These equations can be nondimensionalized as follows:We
divide all lengths li and ri by the average slope length in
the N-heap state ( ¼ L=2N, in the absence of depletion

effects [8]): ~li ¼ 2liN=L and ~ri ¼ 2riN=L. Defining ~f ¼
f=C we then arrive at

d~li
d~t

¼ ~fð~li; ~riÞ � ~fð~li�1; ~ri�1Þ (6)

(and similarly for d~ri=d~t), in which the dimensionless time
coordinate ~t must be defined as ~t ¼ 4N2Ct=L2.

Now we focus on a single heap i in a N-heap state (i ¼
1; . . . ; N) and compute its time-evolution with Eq. (6) until
it merges with one of its two neighbors. This yields a
dimensionless lifetime ~Ti of the heap, which can subse-
quently be translated to its dimensional value: Ti ¼
~TiL

2=ð4CN2Þ. So the lifetime Ti of an arbitrary heap i in
the N-heap state scales as 1=N2. The life span of this
N-heap state is equal to the shortest Ti (since the first
heap that merges terminates the N-heap state) and there-
fore decays faster than 1=N2, because the statistical mini-
mum of a sample of N values naturally decreases with N.
More specifically, when N is not too small, the merging
events can be considered as independent, so that the set of
Ti’s for the N-heap state obeys an exponential distribution.
One of the properties of such a distribution (see the sup-
plementary material [11]) is that the average minimum
value, i.e., the minimum value in a set of N numbers taken
randomly from an exponential distribution, decreases with
the sample length as 1=N. Hence the mean life span �N
scales as 1=N3, which explains the observed scaling
behavior.

The above analysis also shows that, for the current
problem, NðtÞ is a more intricate quantity than �N: The

total elapsed time tðNÞ at the end of theN-heap state equals
the sum of the �N of all states that lie between the initial
number of heaps Ninit and N. For small N we approximate

tðNÞ ¼ XNinit

N0¼N

�N0 �
Z Ninit

N
�N0dN0 /

Z Ninit

N

dN0

N03 ; (7)

so that tðNÞ scales as N�2 for N � Ninit or vice versa,

NðtÞ / t�1=2. This explains the behavior found in Fig. 3, as
well as in the data for small N in the inset of Fig. 6.
Conclusion.—The essence of the coarsening of Faraday

heaps has been captured in a simple system of differential
equations. The model gives results that are in excellent
quantitative agreement with both the experiment and simu-
lations. Combining the three approaches, we have shown
that �N , the mean life span of the N-heap state, scales as
N�3 during the entire coarsening process. Furthermore,
towards the end of the process the number of heaps de-

creases approximately as NðtÞ / t�1=2.
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