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Scattering processes in an optical microcavity are investigated for the case of silicon nanocrystals

embedded in an ultra-high-Q toroid microcavity. Using a novel measurement technique based on the

observable mode splitting, we demonstrate that light scattering is highly preferential: more than 99.8% of

the photon flux is scattered into the original doubly degenerate cavity modes. The large capture efficiency

is shown to result from the Purcell enhancement of the optical density of states over the free space value,

an effect that is more typically associated with spontaneous emission. The experimentally determined

Purcell factor has a lower bound of 171.
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Optical microcavities find application in a variety of
applied and fundamental studies [1], and in nearly all
embodiments subwavelength defect centers are present
that lead to scattering. Here we analyze the effect of
scattering in an optical microcavity, using a toroid micro-
cavity containing silicon nanocrystals (Si NCs) [2] as
scattering centers. Using a novel measurement technique
we demonstrate that light scattering is highly preferential;
99.8% of all scattered light is scattered into the original
eigenmodes. This value cannot be explained by the exist-
ing geometrical optics theory [3]. A theoretical analysis
shows that the observed enhanced scattering rate into the
original cavity mode is due to the enhancement of the
optical density of states over the free space value, and
therefore has the same origin as the Purcell effect [4–6]
in spontaneous emission. The connection that the local
density of states underlies enhanced scattering was first
noted in Ref. [7]. The result is also consistent with a recent
theoretical and experimental analysis of controlled cou-
pling of counterpropagating modes in whispering gallery
resonators [8]. Extending the model first introduced in
Ref. [8], we show theoretically that the power scattered
into the microcavity is enhanced by the Purcell factor and
provide a method to extract the Purcell factor experimen-
tally. The presented experimental and theoretical results
establish the significance of the Purcell factor for scattering
processes within a microcavity and constitute the highest
experimentally measured Purcell factor to date (171).

It is a well-known phenomenon [3,9,10] that the reso-
nances of whispering gallery mode (WGM) microcavities
[3,9–11] appear as doublets. The doublet splitting is due to
lifting of the twofold degeneracy of the clockwise (CW)
and counterclockwise (CCW) WGMs that occurs when
these modes are coupled due to scattering [3]. In what
follows, it is shown how the experimentally observable
mode splitting can be directly used to infer the capture
efficiency (�), defined as the fraction of light scattered into

the original eigenmodes, and which, therefore, does not
contribute to cavity losses [12].
For a single nanoparticle scattering center, with cross

section �s and a number density N, the total scattering rate
is given by �tot ¼ �sN

c
n , where c is the speed of light. The

mode splitting (�, in the frequency domain) is then given
by � ¼ 1

2��tot. The factor of
1
2 takes into account that the

scattering of light into original eigenmodes (i.e., self-
coupling) does not contribute to the observed mode split-
ting. Owing to the small size of the scattering centers in
comparison to the wavelength of light, it is assumed that
scattering is equally divided into CW and CCW direction
(i.e., Rayleigh scattering limit). The cavity dissipation rate
is given by ��1 ¼ ð1� �Þ�tot þ �a

�s
�tot, where the term

involving �a (the absorption cross section of the scattering
centers) accounts for absorptive loss associated with the
scattering centers. In addition, the rate 1=�0 is introduced
and describes other loss mechanisms not resulting from the
scattering centers. The total cavity Q is then given by Q ¼
!ð1=�0 þ 1=�Þ�1. The degree to which the scattering pro-
cess couples the initially degenerate cavity modes can be
described by the modal coupling parameter � [10]:

� ¼
� 1

2��tot

��1
0 þ ð1� �Þ�tot þ �a

�s
�tot

�
: (1)

Thus, � reflects the relative ‘‘visibility’’ of the doublet as
appearing in the undercoupled resonance spectrum [9,10].
The capture efficiency � can be retrieved from � as

follows. In the presence of other loss channels, such as
residual material absorption, two limits of Eq. (1) can be
considered. First, if the cavity losses are dominated by non-
scattering-center related loss, i.e., the absorption-limited
case ��1

0 � ð1� �Þ�tot þ �a

�s
�tot, Eq. (1) simplifies to

lim
��1
o ��tot

� ¼ 1

2
��tot�0 ¼ ��tot

2!
Q0; (2)
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i.e., � measured for different cavity modes increases line-
arly with intrinsic Q0 � !�0 (if it is assumed that scatter-
ing is constant for all cavity modes). In this regime, a lower
bound of the capture efficiency � can be found, given by
�> 2!�=Q0�tot.

Second, in the scattering-center-limited case, and as-
suming �o is constant (i.e., non-scattering-center absorp-
tion is fixed), it is useful to rewrite Eq. (1) in terms of total
Q where Q�1

tot � Q�1
0 þQ�1

scat with Qscat � !�,

� ¼ 1

2

�

1� �þ �a

�s

�
1� Qtot

!�0

�
: (3)

This equation shows that a signature of this regime will be
a decreasing linear dependence of � on total Q.
Furthermore, in such a � vs Qtot plot, the Q-axis intercept
(Qx) gives the non-scattering-center loss through !�o ¼
Qx, while the � intercept (�x) yields the following relation:

� ¼ 2�x

1þ2�x
ð1þ �a

�s
Þ. Significantly, this shows that measure-

ment of �x provides another important lower bound on
capture efficiency through the relation �> 2�x=ð1þ
2�xÞ. Moreover, the functional differences in the depen-
dence of � vs Q determine whether the cavity is operating
in the absorption or scattering loss dominated regime. To
test the above model, we have investigated the scattering
processes of SiO2 toroid microcavities [13,14].

Figure 1 shows measurements of the � parameter for an
undoped SiO2 50-�m-diameter toroid microcavity, mea-
sured for successive fundamental resonances with different
Q in the 1550 nm band. A cavity resonance scan is pro-
vided in the upper-right-hand panel of Fig. 1, and shows
the typical doublet splitting of�10 MHz observed for pure
SiO2 toroids. The data in the main panel of Fig. 1 clearly
follow a positive-slope, linear relationship, indicating that
the cavity resonances follow absorption-limited behavior

(attributed to adsorbed water and OH on the surface of the
toroid [15]). The scattering rate �=2� derived from the
data is plotted in the lower-right-hand figure, and is indeed,
to a very good approximation, the same for all modes.
From the highest observed doublet splitting (� ¼ 28) the
lower estimate of the capture efficiency is�> 96:4%. This
value cannot be explained by the quasigeometrical estima-
tions of Ref. [3] which predict a maximum capture effi-
ciency of 90%. This model assumes that scattered light
obeys a Rayleigh-type angular distribution, and can couple
back into the CWand CCWmodes, provided the scattering
angle � is within the critical angle � of the mode. This
model, while adequate to describe losses of a waveguide
bend, is (as shown below) incomplete as it neglects en-
hancement of the scattering through the Purcell effect.
To infer � more exactly, measurements were performed

in the scattering-center-limited regime, by fabricating SiO2

toroid microcavities doped with Si NCs. Si NCs exhibit
quantum-confined photoluminescence (PL) in the visible
and near infrared. Si NCs do not possess significant ab-
sorption transitions at 	 ¼ 1:5 �m and have a high refrac-
tive index relative to the SiO2 matrix (n ¼ 3:48 vs
n ¼ 1:44) and thus act (in the 1550-nm band) as strong
scattering centers. The Si NC doped cavities were made by
ion implantation of 900 keV Siþ ions (fluence 9:1�
1016 cm�2) into a thermally oxidized Si wafer (2 �m
oxide), followed by annealing and toroid fabrication. In
order to confirm the presence of Si NCs after fabrication,
2D cross-sectional PL images were measured. A bright
luminescent ring is observed, characteristic of emission
from Si NCs. The emission spectrum (cf. Fig. 2) peaks at
	 ¼ 675 nm, corresponding to a NC diameter of �3 nm.
The optical resonances of Si NC doped microcavities

exhibited splitting frequencies as large as 1 GHz. The
highest observed modal coupling parameter was � ¼ 50.
Despite strong scattering from the NCs, a Q> 107 is
attained for most resonances.
Two different sets of transverse cavity modes (attributed

to the radial mode index n ¼ 1 and n ¼ 2) were charac-
terized with progressing angular mode numbers (‘; ‘þ
1; ‘þ 2; . . . ). Because of the inhomogeneous distribution
of the NCs (cf. Fig. 2), these modes are dominated by
differing levels of scattering. However, due to the presence
of water and OH adsorbed onto the cavity surface, each set
of radial modes experiences the same amount of residual
absorption. � vs Qtot measurements for each of these
resonances are shown in Fig. 3. Two clear, linear behaviors
are present, representative of absorptive and scattering-
center-limited regimes. The solid line (negative slope) in
Fig. 3 is attributed to the n ¼ 1 radial modes and is
scattering-center limited. From the observed behavior,
the quantity �x was determined. Using Eq. (3), we obtain
�> 99:42% (�0:04%) and �0 ¼ 115 ns (�3 ns) (i.e.,
Q0 ¼ 1:4� 108). The positive slope data (absorptive lim-
ited regime) are attributed to the n ¼ 2 radial modes,
which possess increased intrinsic (OH and water) absorp-
tion losses, owing to their slower decaying field amplitude
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FIG. 1 (color online). Left: Modal coupling parameter (or
doublet ‘‘visibility’’) � as a function of Q for several fundamen-
tal modes of a SiO2 toroid microcavity. A scanning electron
micrograph of a toroid microcavity is shown as the inset. Upper
right-hand panel: Characteristic spectral scan, showing a typical
mode splitting of �10 MHz and �� 30. Lower right-hand
panel: Splitting Qsplit (¼!=�) as a function of Q, which is

nearly identical for all modes of the resonator.
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outside the cavity. This mode identification is also consis-
tent with the inhomogeneous distribution of NCs, which
causes increased scattering for higher-order radial modes
(cf. Fig. 2). The inferred intrinsic cavity lifetime �0 is in
good quantitative agreement with estimates of the absorp-
tion loss due to water adsorbed onto the cavity surface [15].
The remarkably high lower bound on capture efficiency of
99.42% found here clearly demonstrates that optical scat-
tering in microcavities occurs highly preferentially into
cavity eigenmodes.

The role of the Purcell effect in the scattering process
was first noted in Ref. [7], and was later analyzed in the
role of coupling CW and CCW modes via an evanescent
scattering center [8]. However, the precise way in which
the Purcell factor enters has so far not been described.
Here, extending the model of Ref. [8], we show that the
scattering between CW and CCW mode is precisely en-
hanced by the Purcell factor. Central to Purcell’s original
analysis [4] is the use of both quasimodes and continuum
modes to explain enhanced spontaneous emission from a
dipole emitter within a cavity. Along these lines, the local
density of continuum modes is higher within the cavity (by
the Purcell factor) and the spontaneous decay rate for an
atom in resonance with a cavity mode is enhanced by the
same factor (via Fermi’s golden rule). This overall rate
enhancement is proportional to Q=V, where Q is the

cavity’s optical Q factor and V is the mode volume.
Extending the model introduced previously in Refs. [3,8],
scattering of a resonator mode by a point defect into a
continuum mode is described by

_a k ¼ �
!kak � 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!o!k

4VCWVk

s
aCW; (4)

where ak (aCW) is the lowering operator for a continuum
(resonator) mode with wave vector k (index CW) and
frequency !k. The index CW in this case signifies a clock-
wise mode of a whispering gallery resonator, � is the
polarizability of the scattering center, and, for reasons
that will become apparent, the polarization of all modes
is taken to be the same. The scatterer is assumed to be at a
maximum of the cavity’s spatial mode, and, for the initial
portion of this analysis, the continuummodes are treated as
discrete by use of a large quantization volume (Vk). This
equation is now used to investigate the role of the Purcell
effect in backscatter coupling.
The electric field amplitude for the CCW resonator

mode can be constructed by summation over only those
continuum modes that comprise the CCW mode, i.e.,ffiffiffiffiffiffiffiffiffiffiffi

!o

2VCCW

q
aCCW ¼ P

kCCW

ffiffiffiffiffiffi
!k

2Vk

q
ak followed by substitution us-

ing the integral form of Eq. (4). The notation kCCW in-
dicates the above restriction on the summation over k.
Because the mode volume is different for continuum (Vk)
and resonator modes (VCCW;CW), it is essential that this

summation be performed with respect to electric field
amplitudes (as opposed to lowering operator amplitudes).
In analogy to the standard Weisskopf-Wigner [16] treat-
ment of spontaneous emission, the quantization volume is
subsequently enlarged so that the summation becomes an
integration over the continuum making up the CCWmode.

FIG. 3 (color online). Normalized splitting parameter (�) as a
function of Q for the microcavity from Fig. 2. The solid line is a
linear fit to Eq. (3) in the scattering-limited regime (closed
circles), yielding �0 ¼ 115:2� 3 ns, and � ¼ 99:42� 0:04%.
The low Q data (stars), fitted with the dashed line, correspond to
higher-order (absorption-limited) radial modes [Eq. (2)]. The
extrapolated intercept of the data with the vertical axis yields a
lower bound for the scattering efficiency (�x).

FIG. 2 (color online). Cross-sectional confocal PL images
taken on a 72-�m-diameter Si NC doped SiO2 toroidal micro-
cavity. Photoluminescence is collected in 650–690 nm band.
(a) x-y cross section. (b) y-z cross section. Both images are taken
with the toroid immersed into index-matching oil doped with
rhodamine. The insets show PL spectra taken at characteristic
locations in the toroid. The outer bright line in both images is
attributed to the PL of the rhodamine dye and serves to deter-
mine the cavity’s outer contour.
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!o

2VCCW

s
aCCW ¼ �
�

ffiffiffiffiffiffiffiffiffiffiffiffi
!o

2VCW

s Z t

�1
d�aCWð�Þ

�
Z
kCCW

dk

ð2�Þ3
!k

2
e�
!kðt��Þ: (5)

Since all quantities within the integral over k depend
upon !k, a density of modes function is introduced to

enable integration over frequency, via
R
kCCW

dk
ð2�Þ3 !

1
VCCW

R
d! �=2�

ð!�!oÞ2þð�=2Þ2 . This density function is precisely
the Purcell density of states since it characterizes the di-
pole scattering into modes that comprise the CCWmode of
the resonator, where !o and � ¼ ��1 þ ��1

0 are the fre-

quency and the decay rate of the CCW (and CW) resonator
mode. In writing this expression, the mode density has
been expressed as a Lorentzian, normalized so that, upon
integration, there is precisely one mode per cavity line-
width. The integration with respect to frequency is now

performed yielding the result aCCWðtÞ ¼ �
� !o

2V �R
t
�1 d�aCWð�Þe�
!oðt��Þe�ð�=2Þðt��Þ, where VCCW ¼

VCW � V has been used. For a scattering center that is
driven at a frequency resonant with the cavity, this integral
equation enables construction of the following power cou-
pling equation between the CW and CCW modes,

_p CCW ¼ ��pCCW þ �2 !oQ

V2
pCW; (6)

where pCCW is the power in the CCW mode (pCCW /
aCCWa

�
CCW) and pCW is the drive power at frequency !o

in the clockwise mode. The coefficient of pCW gives the
scattering rate of CW into CCW optical power caused by
scattering from the point defect. The defect will also
produce Rayleigh scattering into the other (i.e., noncavity
continuum modes). When this isotropic scattering rate
[�iso ¼ �2!4

0=ð6�c3VÞ] [8] is used to normalize the CW

to CCW coupling, a remarkable result is apparent:

1

�iso

�2 !oQ

V2
¼ 3

4�2
	3 Q

V
: (7)

The final expression here is none other than the Purcell
factor [4,5], well known in the context of spontaneous
emission enhancement in cavity QED [4–6]. This result
essentially states that the observed enhancement of collec-
tion efficiency is entirely the result of the local density of
mode enhancement caused by the Purcell effect. The result
also establishes a precise relationship between the collec-
tion efficiency and the Purcell factor expressed as follows:

F ¼ �

1� �
: (8)

Using this expression and the lower bound on � of 99.42%
yields a measured Purcell factor of at least 171.

This is the highest Purcell factor measured to date.
Theoretically, the Purcell factor for the toroid microcav-
ities used in the experiments (Q ¼ 1:3� 108, D ¼
72 �m, Aeff ¼ 14 �m2) equals F ¼ 2060, corresponding
to � ¼ 99:95%. The discrepancy between this and the

experimentally found value is likely to be caused by the
presence of minute absorption. Finally, it is noted that the
largest observable mode splitting (i.e., Purcell factor) is
necessarily bound by the fact that the scattering center
itself limits the cavity Q (and correspondingly the Purcell
factor). Indeed, in this scattering dominated regime, the
largest ratio of mode splitting is given by the expression

�max ¼ 3	3=4�2� ¼ 3	3=ð16�3a3Þ n2þ2
n2�1

[8] for a spheri-

cal scattering particle of radius a and refractive index n.
Analysis reveals that for silicon nanocrystals of size 3 nm
this would—in the absence of absorption mechanisms—
allow observation of a Purcell factor exceeding 10 000 for
the cavity used in this work.
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