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Semilocal density functionals for the exchange-correlation energy are needed for large electronic

systems. The Tao-Perdew-Staroverov-Scuseria (TPSS) meta-generalized gradient approximation (meta-

GGA) is semilocal and usefully accurate, but predicts too-long lattice constants. Recent ‘‘GGA’s for

solids’’ yield good lattice constants but poor atomization energies of molecules. We show that the

construction principle for one of them (restoring the density gradient expansion for exchange over a wide

range of densities) can be used to construct a ‘‘revised TPSS’’ meta-GGAwith accurate lattice constants,

surface energies, and atomization energies for ordinary matter.
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Kohn-Sham theory [1] is the method of choice to de-
scribe large many-electron systems in condensed matter
physics (since the 1970s) and quantum chemistry (since the
1990s). In principle, this theory delivers the exact ground-
state spin densities n"ðrÞ, n#ðrÞ, and energy E for N elec-

trons in external potential vðrÞ, via solution of N self-
consistent one-electron Schrödinger equations. In practice,
simple and reasonably accurate approximations to the
density functional for the exchange-correlation energy
are needed. Semilocal approximations (e.g., Refs. [2–4])

Exc½n"; n#� ¼
Z

d3rn�xcðn"; n#;rn";rn#; �"; �#Þ (1)

require only a single integral over real space and so are
practical even for large molecules or unit cells. In Eq. (1),
n ¼ n" þ n# is the electron density and �� ¼ P

ijrc i�j2=2
is the positive kinetic energy density; all equations are in
atomic units. Semilocal approximations often work be-
cause of proper accuracy for a slowly varying density, or
because of justified error cancellation between exchange
and correlation [5] (requiring a short-ranged xc hole). They
can be reasonably accurate for the near-equilibrium and
compressed ground-state properties of ‘‘ordinary’’ matter,
where neither strong correlation nor long-range
van der Waals interaction are important. They can also
serve as a base for the computationally more-expensive
fully nonlocal approximations needed to describe strongly
correlated systems [5] and soft matter [6].

Semilocal functionals should be exact for the uniform
electron gas, and should satisfy the spin- and coordinate-
scaling properties of the exchange term Ex. The earliest
one, the local spin density approximation (LSDA) [1,2],
uses only the ingredients n", n# and predicts reasonable but
too-short lattice constants for solids, good surface energies
for simple metals (but with substantial error cancellation
between exchange and correlation), and molecular atom-
ization energies that are unacceptably high. The nonempir-
ical Perdew-Burke-Ernzerhof (PBE) generalized gradient

approximation (GGA) [3] adds the ingredients rn", rn#,
and uses them to recover the gradient expansion for the
correlation energy Ec of a slowly varying density, to make
the correlation energy scale properly to a constant in the
high-density limit, and to satisfy other constraints. The
PBE GGA predicts reasonable but too-long lattice con-
stants, surface energies that are better than LSDA for
exchange alone and correlation alone but worse for their
sum, and improved atomization energies. The nonempiri-
cal Tao-Perdew-Staroverov-Scuseria (TPSS) meta-GGA
[4] adds the ingredients �", �#, and uses them to recover

the fourth-order gradient expansion for exchange in the
slowly varying limit, to make the functional exact for the
energy (but not for the potential) of all one-electron ions, to
make the exchange potential finite at the nucleus, etc.,
TPSS predicts lattice constants that are only a little shorter
than those of the PBE GGA, good surface energies, and
very good atomization energies [4,7]. The bond lengths of
stiff molecules are accurate [7] in TPSS. A meta-GGA
fitted to molecular data is M06-L [8].
Meta-GGA is not computationally much more expen-

sive than LSDA or GGA, once a self-consistent program
(e.g., Refs. [7,9]) has been written. For molecules contain-
ing transition-metal atoms, TPSS is only 30% slower [9]
than the PBE GGA. By respecting the paradigms of both
condensed matter physics and quantum chemistry, the
TPSSmeta-GGAwas intended to be a workhorse semilocal
functional for both, and, in particular, for molecules
bonded to or reacting on solid surfaces. Perhaps due to
its lattice-constant errors, TPSS has not been so widely
adopted. Because of the sensitivity of many solid state
properties (magnetism, ferroelectricity [10], bulk modulus,
etc.) to lattice constant, recent years have seen instead the
emergence of ‘‘GGA’s for solids’’ [e.g., the Armiento-
Mattsson 2005 (AM05) GGA [11] and the modified PBE
GGA for solids, PBEsol [12] ] which typically predict good
lattice constants and surface energies, but rather poor
atomization energies.
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The construction principle for the PBEsol GGA for sol-
ids [12] was to restore the second-order gradient expansion
for exchange over a wide range of densities. Here we will
show that this principle can be imposed to make a revised
TPSS (revTPSS) meta-GGA that preserves all the correct
constraints of TPSS, keeps its good surface and atomiza-
tion energies, but yields lattice constants as good as those
of the GGA’s for solids. We hope that revTPSS can become
the workhorse functional that TPSS was intended to be.

We begin with the semilocal exchange energy of a spin-
unpolarized density [4]:

Esl
x ½n� ¼

Z
d3rn�unifx ðnÞFxðp; zÞ: (2)

Here �unifx ðnÞ ¼ �3ð3�2nÞ1=3=4� is the exchange energy
per electron of a uniform gas of density n, p ¼ s2 is the
square of the reduced density gradient s ¼ jrnj=
½2ð3�2nÞ1=3n�, and z ¼ �W=� where �W ¼ jrnj2=8n is
the von Weizsäcker kinetic energy density and � ¼ �" þ
�#. The exchange enhancement factor Fx is 1 in LSDA, and

otherwise 1þ �� �=ð1þ x=�Þ, where � ¼ 0:804. For a
slowly varying density, x is small and of order r2, making
Fx � 1þ x. In GGA, x ¼ �p, where � ¼ 0:219 51 in the
PBE GGA and 10=81 ¼ 0:123 46 in the PBEsol GGA. In
meta-GGA, x depends upon z as well as p, and only its
slowly varying asymptote is ð10=81Þp, but the large-p
asymptote of Fx, 1þ �� �2=�p, is independent of z.
As in Ref. [4], we introduce � ¼ ð�� �WÞ=�unif ¼
ð5p=3Þðz�1 � 1Þ, where �unif ¼ nð3=10Þð3�2nÞ2=3 is the
orbital kinetic energy density of the uniform gas. Any
one- or two-electron density has z ¼ 1 or � ¼ 0, while a
slowly varying density has small z � 5p=3 and � � 1.

In the TPSS meta-GGA, x of the previous paragraph is
given by Eq. (10) of Ref. [4]. For � � 1 we can make the
meta-GGA Fx more like that of the PBEsol GGA through
two changes: (1) Change a term in x from cz2p=ð1þ z2Þ2
to cz3p=ð1þ z2Þ2, which shifts this term (whose coeffi-
cient c is much larger than a typical gradient coefficient)
from 6th to 8th order in the gradient expansion. All TPSS
exchange constraints remain satisfied, without any change
in the coefficients c, e, and �. Fx is unchanged for � ¼ 0,
and at large s for all �, but is reduced at smaller s for � ¼
1. The energy is raised more for a molecule (which has
more regions of small s) than for the component atoms.
(2) Now change� from its TPSS (and PBE) value 0.219 51
toward its PBEsol value 10=81, letting c and e adjust
accordingly to satisfy all TPSS constraints. Figure 1 shows
a good emulation of the PBEsol GGA by � ¼ 0:14, c ¼
2:352 04, and e ¼ 2:1677, over the range of physical im-
portance 0< s < 3, and especially for s < 1 where the
second-order gradient expansion for exchange is valid
[12,13]. Reducing � reduces Fx at large s, raising the
energy more for the component atoms (which have more
regions of large s) than for the molecule. The net effect of
these two changes is to decrease atomization energies
slightly, on average, and to increase surface energies.

While the exact exchange energy is unique, the exact
exchange energy density is not. The conventional choice
based on the Fock integral of the Kohn-Sham orbitals is
just the � ¼ 1 member of a one-parameter (0:5 � � � 1)
family of exact exchange energy densities, based upon a
simple coordinate transformation [14], which all agree for
uniform densities but not for nonuniform ones. All have the
same system-averaged exchange hole [15]. Figure 2 for the
hydrogen atom shows that the choice � ¼ 0:893 closely
matches the revTPSS energy density of Eq. (2). Thus
revTPSS has two reference systems in which it reproduces
an exact exchange-correlation energy density: the uniform
gas (a paradigm for condensed matter) and the one-
electron atom or ion (a paradigm for quantum chemistry).
(The same statement is true of TPSS [16].) Kohn and
Mattsson [17] proposed supplementing the uniform gas
reference system by one in which the density decays
evanescently, but their second reference system was the
Airy gas and not the hydrogen atom. AM05 [11] exchange
was constructed in part by fitting the conventional ex-
change energy density of the Airy gas [18]. Knowing the
exact exchange energy density in the revTPSS or TPSS
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FIG. 1. Exchange enhancement factor vs reduced density gra-
dient for the PBEsol GGA and for two meta-GGAs at � ¼ 1.
The slowly varying limit is � � 1 and s � 0. By construction,
revTPSS is closer to the PBEsol GGA than TPSS is.
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FIG. 2. Radial exchange energy density for the hydrogen atom.
The revTPSS curve is from a spin-scaled Eq. (2). Two
�-dependent exact exchange energy densities are also shown;
the conventional one is � ¼ 1.
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gauge may be useful for the construction of hyper-GGA’s
[5,16].

Having improved TPSS exchange, we now refine TPSS
correlation. The PBE GGA and TPSS [through its ingre-
dient �PBEc ðn"; n#;rn";rn#Þ] use a correlation gradient co-

efficient 	 ¼ 0:066 725 derived in the high-density limit
by Ma and Brueckner [19]. Langreth and Vosko [20] have
derived a more correct value about 17% bigger, but the
difference comes from a long-range contribution to the
gradient expansion of the correlation hole that would be
cut off by our underlying real-space cutoff construction
[21] of the PBE GGA. We do not in any case need to
restore the correct gradient coefficient for correlation,
since for real densities the second-order gradient expansion
for the correlation energy is never even close to being valid
[12,13]. However, Hu and Langreth [22] have derived the
density dependence of the Ma-Brueckner 	 beyond the
random phase approximation, which is relevant to our
cutoff construction and which we have fitted roughly
(Fig. 3) by

	ðrsÞ ¼ 0:066725ð1þ 0:1rsÞ=ð1þ 0:1778rsÞ; (3)

where n ¼ 3=ð4�r3sÞ. Equation (3) is designed so that, for
rs ! 1, the second-order gradient terms for exchange and
correlation cancel by innocuous assumption. The reduction
of 	 with rs increases atomization energies slightly, on
average, and decreases surface energies. Aside from our
use of Eq. (3), we keep the form of TPSS correlation
unchanged, satisfying the TPSS constraints with

Cð
; 0Þ ¼ 0:59þ 0:9269
2 þ 0:6225
4 þ 2:1540
6; (4)

which replaces Eq. (13) of Ref. [4].
We turn now to the results, which are summarized

briefly in Table I (in terms of the mean error or ME and
the mean absolute error or MAE, or their relative analogs
MRE and MARE) and in full detail (along with figures for
revTPSS Fx and Fxc) in Ref. [23]. Table I shows the error
statistics of several density functionals for the lattice con-
stants of 21 solids, in comparison with experimental values
corrected to a static lattice, calculated as in Ref. [24] using

the BAND [25] code. The 21 solids include 11 metals (Li,
Na, Ca, Sr, Ba, Al, Pb, Cu, Rh, Pd, Ag) and 10 nonmetals
(C diamond, Si, SiC, Ge, GaAs, NaCl, NaF, LiCl, LiF,
MgO). Our test set is the same as that of Ref. [24], except
that we have here omitted the three softest solids (K, Rb,
Cs), for which the revTPSS lattice constants are about

0:10–0:15 �A too long. K, Rb, and Cs have bulk moduli
(4 to 2 GPa [24]) close to those of the rare-gas solids Xe,
Kr, and Ar [26] (and less than 1% of that of diamond), and
so could be classified as ‘‘soft matter’’ where the long-
range van der Waals interaction between large ion cores
can significantly shrink the lattice constant; we plan to
investigate this in future work. Table I shows that
revTPSS performs about as well (and actually better)
than the ‘‘GGA’s for solids,’’ the PBEsol GGA and the
AM05 GGA. Larger data sets [27] show error statistics
similar to ours for the functionals that preceded revTPSS.
After the lattice constants, Table I reports some cohesive
energy results for solids.
Table I also shows the error statistics for the exchange-

and exchange-correlation surface energies for jellium,
computed as in Ref. [12], in comparison to the exact
exchange and nearly exact revTPSS exchange-correlation
values for bulk densities with rs ¼ 2, 3, 4, and 6. Again,
revTPSS performs well. Its very accurate surface exchange
energies reflect [12,13] its correct recovery of the gradient
expansion for exchange.
In Table I, we present the error statistics for the six

atomization energies (SiH4, SiO, S2, C3H4, C2H2O2,
C4H4) of the small representative AE6 [28] set and the
223 enthalpies of formation of the G3 [29] set, computed
self-consistently using a modified Gaussian code [30].
Note that, by construction, the error of the enthalpy of
formation is nearly equal and opposite to that of the atom-
ization energy. The revTPSS values are good, and even a
little better on average than the TPSS values. For the 47 G3
pure hydrocarbons, the MAE drops from 5.9 (TPSS) to 3.1
(revTPSS) kcal/mol.
Finally, as a check on hydrogen bonds, we have applied

revTPSS to the W6 set [31] of dissociation energies of six
small water clusters (four dimers, two trimers). The
revTPSS error statistics (ME ¼ �1:0 kcal=mol, MAE ¼
1:0 kcal=mol) are only slightly worse than those of TPSS
(ME ¼ �0:9 kcal=mol,MAE ¼ 0:9 kcal=mol), but not as
good as those of the PBE GGA (ME ¼ �0:0 kcal=mol,
MAE ¼ 0:3 kcal=mol). In the original TPSS, � was set to
the PBE value 0.219 51 out of concern for the hydrogen
bonds. Note that the inclusion of long-range van der Waals
interaction could at least reduce the revTPSS error statis-
tics for the W6 set.
Stereoelectronic effects on the energies of hydrocarbons

are actually better described [32] by the PBEsol GGA than
by the PBE GGA or TPSS. We plan to test revTPSS for
these problems.
In summary, we have shown that the PBEsol idea [12],

restoring the second-order gradient expansion for ex-
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FIG. 3. Finite-range contribution to the gradient coefficient for
correlation, as a function of density parameter rs, from Ref. [22]
and from Eq. (3).

PRL 103, 026403 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
10 JULY 2009

026403-3



change over a wide range of densities, can be applied to the
TPSS meta-GGA [4], leading to a revised version
(revTPSS) with good lattice constants, surface energies,
and atomization energies. revTPSS could well become a
workhorse semilocal density functional for the ordinary
matter of condensed matter physics and quantum chemis-
try, as well as a base for the construction of fully nonlocal
approximate functionals.
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TABLE I. Error statistics for various density functionals. (0:5292 �A ¼ 1 bohr; 1 kcal=mol ¼ 0:0434 eV ¼ 0:001 59 hartree.) The
exact jellium surface exchange-correlation energy is still imprecisely known. We have taken it to be the revTPSS value, although it
could instead be the TPSS value as in Ref. [12]. The non-revTPSS lattice constants are from Ref. [24]. Most non-revTPSS surface
energies and atomization energies are from Ref. [12]. The non-revTPSS enthalpies of formation are from Ref. [7].

LSDA PBE

GGA

TPSS AM05

GGA

PBEsol

GGA

revTPSS

Lattice constants (Å) of 21 solids

ME �0:079 0.054 0.033 0.014 �0:010 0.011

MAE 0.079 0.065 0.047 0.039 0.038 0.036

Cohesive energies of 9 nontransition metals and 6 insulators (eV/atom)

ME 0.32 �0:10 � � � � � � 0.11 0.03

MAE 0.32 0.11 � � � � � � 0.14 0.09

Jellium surface exchange energies (%) for rs ¼ 2, 3, 4, 6

MRE 45.8 �20:9 �11:9 28.8 2.9 �1:0

MARE 45.8 20.9 11.9 28.8 2.9 2.2

Jellium surface exchange-correlation energies (%) for rs ¼ 2, 3, 4, 6

MRE �2:9 �5:6 �0:8 0.6 �0:4 0.0

MARE 2.9 5.6 0.9 0.9 1.2 0.0

Atomization energies (kcal/mol) of the 6 AE6 molecules ð6� 311þGð3df; 2pÞÞ
ME 77.4 12.4 4.1 38.7 35.9 3.3

MAE 77.4 15.5 5.9 38.7 35.9 5.9

Enthalpies of formation (kcal/mol) of the 223 G3 molecules ð6� 311þGð3df; 2pÞÞ
ME �121:9 �21:7 �5:1 � � � � � � �3:6

MAE 121.9 22.2 5.7 � � � � � � 4.8
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