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The Landau potential for multivariant displacive phase transformations (PTs) is derived for the most

general case of large rotations, elastic and transformational strains, as well as nonlinear and different

elastic properties of phases. The method of repetitive superposition of large strains is extended for PTs and

is utilized in the finite-element method approach for solution of corresponding coupled phase-field and

mechanical problems. Problems of martensitic variants nucleation and evolution in a nanosize sample,

including a sample with two nanovoids, are solved. A similar approach can be applied for twinning,

dislocations, and reconstructive PTs.
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Ginzburg-Landau (GL) or phase-field equations are
broadly applied for the analysis and simulation of a wide
class of stress-induced martensitic and reconstructive PTs
[1–3]. Recently [3], we advanced this theory by developing
a more sophisticated Landau potential that (in contrast to
previous approaches) generates a stress-strain curve that is
conceptually consistent with known experimental data for
shape-memory alloys, steel, and ceramics. In particular,
constant (stress- and temperature-independent) transfor-
mation strain tensor, nonzero elastic moduli at the PT
point, and weakly temperature-dependent (in particular,
constant) stress hysteresis observed experimentally can
be reproduced. The main limitation of this and other theo-
ries is related to small strain and rotation (i.e., <0:1)
approximation. At the same time, while the crystallo-
graphic theory of martensitic PTs completely neglects
elastic strains, it takes into account large strains and rota-
tions, which appear to be important for determination of
interface orientation [4]. Finite rotation may be caused by
specific loading even at small strains. The volumetric trans-
formation strain for the PT in plutonium, silicon, and
germanium is 0.2; and for the PT graphite-diamond and
rhombohedral-cubic and hexagonal-wurtzitic PTs in BN, it
is 0.54 [5,6]. For all of the above PTs, transformation strain
is highly anisotropic—i.e., it contains a large deviatoric
(shear) component. The transformation shear is 0.2 for PTs
in steels and some shape-memory alloys and is 0.71 for
twinning in bcc and fcc lattices [4–6]. Large elastic strains
can be caused by high pressure. Also, in nanoscale defect-
free volumes and nanofilms, large elastic strains can be
caused by local stress concentrators and lattice misfit.
Thus, fully geometrically and physically nonlinear phase-
field theory is required, especially for nanotechnology and
high-pressure applications.

For the Landau potential in terms of total strain [2]
(rather than transformation strain), extension for finite

deformations does not significantly complicate the theory
at first glance. However, even at small strain, potentials in
terms of total strain cannot describe the above-mentioned
important features of stress-induced martensitic PTs [3].
The only formulation that generalizes theory [3] for large
strains is given in our paper [6]. However, it was limited to
neglect of elastic strains. That formulation also did not
include change in elastic properties of phases, which is
extremely important, for example, for PTs in BN and
graphite. No large-strain simulations based on GL equa-
tions are known.
In this Letter, the Landau potential for multivariant

displacive PTs is derived for the most general case of large
rotations, elastic and transformational strains, and for non-
linear and different elastic properties of phases. The
coupled system of time-dependent GL equations for all
order parameters, characterizing transformation strain for
each martensitic variant, and continuum mechanical
equations is formulated. The method of repetitive super-
position of large strains, developed for viscoelastic
materials [7], is extended here for materials with PTs.
Based on this method, the finite element method (FEM)
approach, algorithm, and code for solution of the above
system of equations are developed. Problems of nucleation
and evolution of martensitic variants in a nanosize sample,
including a sample with two nanoholes, are solved and
analyzed. Note that, due to multiple nonlinearities, the
traditional spectral method [1] cannot be used. It also
would have problems applying stress-free conditions at
variable hole surfaces. A similar potential and approach
can be applied for twinning, dislocations, reconstructive
PTs, and fracture.
We designate contractions of tensorsA ¼ fAijg andB ¼

fBjig over one and two indices as A �B ¼ fAijBjkg and

A:B ¼ AijBji. The transpose of A is AT , and I is the unit

tensor.
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Model.—Multiplicative decomposition of the total de-
formation gradient,

F ¼ @r=@r0 ¼ Fe � Ft; (1)

into elastic and transformational parts will be used [6,8].
Here, r ¼ rðr0; tÞ is the location of a material point at time
t, and rðr0; 0Þ ¼ r0. The transformation deformation gra-
dient (or Bain strain) Fti transforms the stress-free crystal
lattice of an austenite (A) into a stress-free lattice of
martensitic variant Mi, i ¼ 1; 2; . . . ; n, as in the crystallo-
graphic theory [4]. Deviations of F from Ft cause elastic
lattice strains Fe. The decomposition (1) is unique because
lattice rotation is included in Fe. For small strains " � I
and rotations, F ¼ Iþ ", Fe ¼ Iþ "e, and Ft ¼ Iþ "t,
and Eq. (1) reduces to additive decomposition " ¼ "e þ
"t. The order parameter �i for each Mi varies from 0
(corresponding to A and Ft ¼ I) to 1 (corresponding to
Mi). Substituting the Helmholtz free energy c ðFe; �; �iÞ
into the second law of thermodynamics, D ¼ PT: _F�
_c � 0, where D is the dissipation rate and P is the non-
symmetric Piola-Kirchoff stress tensor P (force per unit
area in the undeformed configuration), we obtain, at con-
stant temperature �,

P � FT
t ¼ @c

@Fe

; D ¼ Xi _�i � 0;

Xi :¼ PT � Fe:
@Ft

@�i

� @c

@�i

:

(2)

Equation (2)1 is the elasticity rule, Eq. (2)2 is the dissipa-
tive inequality, and Xi is the driving force for PT to the ith
variant. The corresponding GL equation is

@�k=@t ¼
Xn

i¼1

LkiðXi þ 2�i:rr�iÞ; (3)

where Lki are the kinetic coefficients and �i is the second-
rank gradient-energy tensor. The explicit expression for the
c is derived in the following form:

c ¼ AðEe; �iÞ þ
Xn

k¼1

fð�kÞ þ
Xn�1

i¼1

Xn

j¼iþ1

Fijð�i; �jÞ; (4)

with

Ee ¼ ðFT
e � Fe � IÞ=2;

fð�kÞ ¼ A�2
kð1� �kÞ2 þ �G�ð4�3

k � 3�4
kÞ;

(5)

Fijð�i;�jÞ ¼ B�i�jð1��i ��jÞ½ð�i ��jÞ2 ��i ��j�
þD�2

i �
2
j ð1��i ��jÞ þ�2

i �
2
j ð�i þ�jÞ

� ð �A� AÞ þ�2
i �

2
j ð�iTi þ�jTjÞ: (6)

Here, A is the elastic potential, Ee is the Lagrangian
elastic strain tensor, and �G� is the difference between
the thermal parts of the free energies of M and A. The
parameters A and �A represent the thresholds for the A $
Mi and Mj $ Mi PTs. The constants B and D do not

contribute to phase equilibrium and instability conditions.
However, they affect the free energy far from the A andMi

minima and the minimum-energy paths between the A and
Mi, which means that they control the interface energy and
kinetics of PT. Also, they are used to avoid nonphysical
energy minima that may appear for such a complex poly-
nomial [3]. As an example, we consider the Murnaghan
potential:

A ðEe; �iÞ ¼ 0:5�ð�iÞE1
2 þ�ð�iÞE2 þ C3ð�iÞE1

3

þ C4ð�iÞE1E2 þ C5ð�iÞE3; (7)

where Em ¼ Ee
m:I (m ¼ 1, 2, 3) are the invariants of Ee;

and �, �, and Ci are elastic moduli that depend upon �i in
the same way—e.g.,

� ¼ �0 þ
Xn

k¼1

ð�k � �0Þgð�kÞ; gð�kÞ ¼ 3�2
k � 2�3

k;

(8)

where subscript 0 is for A and k is for Mk. Then, the
parameters Ti in Eq. (6) are

Ti¼�3½0:5ð�i��0ÞE1
2þð�i��0ÞE2þðC3;i�C3;0ÞE1

3

þðC4;i�C4;0ÞE1E2þðC5;i�C5;0ÞE3�: (9)

For the isotropic potential, all elastic constants
with all i�0 are equal. For general anisotropic po-
tential AðEe; Ck; �iÞ ¼ Ee:C2ð�iÞ:Ee=2 þ
ðEe:C3ð�iÞ:EeÞ:Ee=3 þ . . . , where tensors of elastic
moduli of rank k,Ck, are determined by an equation similar
to Eq. (8), and one obtains

Ti ¼ �3AðEe;Ck;i � C0;iÞ: (10)

The transformational part of the deformation gradient is

F t ¼ Iþ Xn

k¼1

qð�kÞ"tk �
Xn�1

i¼1

Xn

j¼iþ1

�2
i �

2
j ð�iZij þ �jZjiÞ;

(11)

Z ij ¼ ða� 3Þ"tj þ 3"ti; "tk ¼ Ftk � I;

qð�kÞ ¼ a�2
kð1� �kÞ2 þ ð4�3

k � 3�4
kÞ;

(12)

where a is the parameter. The method to derive Eqs. (4)–
(12) is similar to that in [3] for small strains. We formulated
the same requirements as in [3] that the Landau potential
has to satisfy, and we derived Eqs. (4)–(12) that satisfy
them for large strain. Thus, Eqs. (4)–(12) describe cor-
rectly the A ! Mi and Mi ! Mj PTs and the typical ex-

perimentally observed features of stress-strain curves, and
they also incorporate all thermomechanical properties of
the A and M. Equation (11) for Ft is independent of stress
and temperature atMi. The main step, which (in contrast to
[3,6]) allowed us to make a proper generalization for large
elastic strains and take into account different nonlinear
elastic properties of phases, is related to formulation of
the Landau potential in terms of Lagrangian elastic strains
(rather than stresses). As a result, the only difference
between Eqs. (4)–(12) from their small-strain counterparts
is substitution of small elastic and transformation strains
with their finite-strain counterparts. Essential geometric
nonlinearities are separated from the potential and con-
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tained in Eqs. (1) and (2). In the small-strain limit,
Eqs. (1)–(12) are equivalent to the theory presented in
[3]. Equations (1)–(12) are supplemented by the equilib-
rium equation in a deformed state: r � � ¼ 0, where � ¼
P � FT= detF is the true Cauchy stress [8].

Material parameters for cubic to tetragonal PT in NiAl
found in [3,6] are: A ¼ 0:8 GPa, �G ¼ �0:315 GPa, a ¼
2:98, �A ¼ 5:32 GPa, B ¼ 0, D ¼ 0:5 GPa, Lii ¼
2600 ðPa sÞ�1, Lij ¼ 0 for i � j, � ¼ 2:588 � 10�10 N

[the isotropic version of GL Eqs. (3) was used]. A plane
strain 2�D problem with two Mi is considered with the
components of Ft (1.215; 0.922; 0.922) and (0.922; 1.215;
0.922) [3,6]. Elastic constants in the potential Eqs. (7),
�0 ¼ 144 GPa, �0 ¼ 74 GPa, �1 ¼ �2 ¼ 379 GPa,
�1 ¼ �2 ¼ 134 GPa, were calculated as the orientational
average of anisotropic moduli taken from [3]; Ci ¼ 0. The
width of the Mi �Mj interface for the stress-free case is

�� ffiffiffiffiffiffiffiffiffiffi
�=A

p
, and for given parameters � ’ 1 nm [3].

Characteristic time is T � 1=ðALÞ ’ 0:5 ps and stress for
A�M PT under hydrostatic tension is estimated (with
elastic strain neglected) as � ¼ A=a=ðdetFt � 1Þ ¼
8:1 GPa [6]. All size, time, and stress parameters will be
presented in terms of � ¼ 1 nm, T ¼ 0:5 ps, and �t ¼
10 GPa.

The finite-element method is employed in this work.
Because of multiple nonlinearities [the nonlinear elasticity
law and the �i dependence of c , the change in geometry,
finite strains and rotations, and nonlinear decomposition
(1)], the traditional spectral method [1] cannot be used.
Because the energy has multiple minima, multiple station-
ary solutions are possible, and the solution strongly varies
on the scale of � and may oscillate in space, special care
must be taken with regard to numerical solution accuracy.
Traditionally, large-strain equations have been linearized
in the form of superposition of the small strains on the
finite strain. Here, we extended the methods of repetitive
superposition of large strains, developed in [7] for visco-
elastic materials, to materials with PTs.

We study nucleation and evolution of multivariant mar-
tensitic microstructure and its growth up to stationary state.
For all problems, lack of complete transformation in the
entire sample is related to the presence of a plane-strain
constraint. We consider a square sample of size l under bi-
axial loading with Cauchy stress components p1 and p2 at
the deformed sample surface. At all boundaries, n � r�k ¼
0, which corresponds to the same surface energies of A and
Mj, where n is the normal to the deformed boundary.

Examples of solutions.—1. Solutions to the problem
with sample size l ¼ 27 under stresses p2 ¼ �p1 ¼ 0:7
are presented in Fig. 1. Initial conditions are stochastic �1

and �2 homogeneously distributed in the range [0, 0.1].
Distribution a is for a geometrically linear formulation [3]
in which we still add calculated displacements to the initial
geometry. Figure 1(b) is for the large-strain formulation.
Comparisons of the evolution of vertical stress �2, out-of-
plane stress �3, and �2 at the point shown in Fig. 1(a) for

geometrically linear and large-strain formulations are
given in Figs. 1(c) and 1(d). In the stationary state, solu-
tions for �2 represent alternating bands of incomplete
martensite; �1 ¼ 0. Microstructure based on the large-
strain formulation differs qualitatively from the geometri-
cally linear one. Specifically, it contains a larger number of
bands with smaller spacing between them. A similar dif-
ference was obtained for various other initial conditions.
Stresses �2 differ by a factor of 4.5.
2. Stationary solutions for �1 and �2 for the problem

with sample size l ¼ 40:22 under tensile stresses p1 ¼
p2 ¼ 1:5 are presented in Fig. 2. Initial conditions are
�1 ¼ 0:1 and �2 ¼ 0 in the central circle and �1 ¼ 0
and �2 ¼ 0:1 in the two other circles with the radius of
3.35. Geometrically linear solutions (a and b) again differ
qualitatively from the large-strain formulation (c and d).
While in the geometrically linear case primitive alternate-
twin microstructure with quite sharp interfaces is observed,
the large-strain formulation results in a much more topo-
logically sophisticated microstructure with broader
interfaces.
3. The physically important problem on martensite nu-

cleation near two nanovoids was solved in large-strain
formulation. Results of simulations for a sample with l ¼
40, two symmetric holes with r ¼ 4:5 (distance between
holes is 14), and tensile stress p1 ¼ 1:2 and p2 ¼ 0:9, are
presented for three time instants in Fig. 3. An initial
perturbation �1 ¼ �2 ¼ 0:1 was prescribed in circles of
radius 6.67 around each hole. At the free surface of the
deformed holes, n � � ¼ 0. The complex evolution of both
embryos includes variant-variant transformation and vis-
ible change in geometry. Nucleation of M2 starts along the
horizontal symmetry axis, while M1 nucleation occurs
along vertical lines near each hole. The maximum of �1

FIG. 1 (color online). (a) and (b) Stationary solutions for �2

for the problem with sample size l ¼ 27 under stresses p2 ¼
�p1 ¼ 0:7. The color legend is the same for all figures. Initial
conditions are stochastic �1 and �2 homogeneously distributed
in 0, 0.1. Distribution (a) is for a geometrically linear problem,
and (b) is for large-strain formulation. (c) and (d) Comparison of
evolution of vertical stress �2, out-of-plane stress �3, and �2 at
the point shown in Fig. 1a for geometrically linear (L) and
nonlinear (NL) formulations.
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almost reaches 1 near the hole, and �2 reaches its maxi-
mum in the center of the sample. In the major part of a
sample, M1 dominates with �1 ’ 0:5.

To summarize, we derived the Landau potential for
multivariant displacive PTs for the most general case of
large rotations, elastic and transformational strains, and for
nonlinear, anisotropic, and different elastic properties of
phases. The method of repetitive superposition of large
strains is extended for PTs and is utilized in the FEM
approach and code for solution of corresponding coupled
phase-field and mechanical problems. Problems of mar-
tensitic variant nucleation and evolution in a nanosize
sample, including a sample with two nanovoids, are solved.
The qualitative difference between geometrically linear
and large-strain solutions is demonstrated. A similar ap-

proach can be applied for twinning, dislocations, and re-
constructive PTs, as well as for PT in soft matter, where
strains are very large. By including inertia (e.g., as in [9]),
this approach can be easily extended to dynamic problems,
and particularly shock-wave problems. Our theory can be
generalized for the case of surface effects and nonsymme-
try breaking degrees of freedom, as in [9]. Also, in the
same way, the phase-field approach to fracture can be
expanded for large strains. Both the transformation strain
(simulating bond breaking) and elastic strains near the
crack tip are large. The results of numerous atomistic
calculations at large strain could not be presented in a
practical analytical form and used in larger-scale contin-
uum simulations because of the lack of continuum large-
strain models. Our results will bridge this gap.
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FIG. 3 (color online). Distribution of �1 (upper row) and �2

(lower row) (a) at time 0.42, (b) 0.63, and (c) 1.71 (a stationary
solution) in a sample with l ¼ 40 and two symmetric holes with
r ¼ 4:5 (the distance between holes is 14), and under tensile
stresses p1 ¼ 1:2 and p2 ¼ 0:9.

FIG. 2 (color online). Stationary solutions for �1 and �2 for
the problem with sample size l ¼ 40:22 under tensile stresses
p1 ¼ p2 ¼ 1:5. Initial conditions are �1 ¼ 0:1 and �2 ¼ 0 in
the central circle and �1 ¼ 0 and �2 ¼ 0:1 in the two other
circles with the radius of 3.35. The geometrically linear solutions
(a) and (b) differ qualitatively from the large-strain solutions (c)
and (d).
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