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Recent ideas based on the properties of assemblies of frictionless particles in mechanical equilibrium

provide a perspective of amorphous systems different from that offered by the traditional approach

originating in liquid theory. The relation, if any, between these two points of view, and the relevance of the

former to the glass phase, has been difficult to ascertain. In this Letter, we introduce a model for which

both theories apply strictly: it exhibits on the one hand an ideal glass transition and on the other

‘‘jamming’’ features (fragility, soft modes) virtually identical to that of real systems. This allows us to

disentangle the two physical phenomena.
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The traditional way to introduce the glass transition is to
start with a liquid of, say, hard particles at low pressures [1]
and to consider a slow compression. At a given point, the
viscosity increases dramatically, the dynamics becomes
sluggish, and the system falls out of equilibrium. Slower
compression protocols push the equilibrium regime further
and make the transition sharper, and one conceives of a
limit of infinitely slow annealing in which one recognizes
(perhaps) a true thermodynamic change of state. An argu-
ment in favor of a thermodynamic transition was given
years ago by Kauzmann, who interpreted it as a conse-
quence of the liquid running out of configurational entropy.
Although the possibility of proving the occurrence of such
an ideal glass transition for a real system seems remote,
there is a family of models (or approximations), for which
this picture holds strictly, within the so-called ‘‘Random
First Order’’ (RFO) scenario [2,3], a mean-field theory
allowing for a complete analytic analysis.

An apparently unrelated set of ideas comes from con-
sidering amorphous assemblies of hard, frictionless par-
ticles in mechanical equilibrium. In general, such systems
can be hypostatic, hyperstatic, or isostatic, depending on
whether the set of contacts yields a number of conditions
smaller, larger, or precisely equal to the number of degrees
of freedom—just like a table with two, four, or three legs
touching a floor. A polydisperse system of spheres will be
isostatic with probability one [4,5], much in the same way
that a four-leg table will only have three touching a rough
floor. Because breaking one single contact already desta-
bilizes an isostatic system, one can then argue that such
systems are marginal [5–7]: they have large responses and
a spectrum of vibrations with finite density of very low
frequency ‘‘soft’’ modes. One is then in the presence of a
‘‘Jammed’’ configuration that is critical, with diverging
lengths, nontrivial exponents, etc. [7].

A natural question is whether this critical ‘‘Jamming’’
phenomenon is in some way a finite-dimensional (beyond
mean-field) manifestation of the glass transition [7] or, in
other words, whether the diverging length associated with

the soft modes of an amorphous packing is a manifestation
of the order underlying the glass transition in finite dimen-
sions. In this Letter, we propose to answer such questions
by constructing a family of models having both theories
written side-by-side with a ‘‘J-point’’ isostatic equilibrium
with a spectrum of soft modes virtually identical to that of
systems of hard spheres and that are by construction mean-
field models with a ‘‘Random First Order’’ behavior [2].
The model.—Consider the usual hard-sphere model

where N nonoverlapping spheres live in a cube of dimen-
sion d, with periodic boundary conditions. Following [8],
we now obtain a mean-field version of this model: the idea
is to let each sphere interact only with a set of z other ones,
all the rest being transparent to it. The set of particles that
interact with a given sphere is chosen once and for all. If
z ¼ N � 1 for each particle, we recover the original prob-
lem, but we shall instead work with z finite. The model is
completely defined by a quenched regular random graph
(see Fig. 1) with nodes labeled by the particle number and
bonds that denote interaction.
This model presents a number of advantages: first, since

interactions are set through a random treelike graph—or
Bethe-Lattice—it is by construction a mean-field glass
model that can be studied exactly with the cavity method
[9] which is an extension of the well-known work of Bethe
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FIG. 1 (color online). The model: Particles evolve in a
d-dimensional space (right), but are only able to ‘‘see’’ a
preestablished subset of the rest. Which particle interacts with
which is encoded in the quenched graph (left).
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and Peierls on trees. Secondly, our model can be seen as a
constraint satisfaction problem (CSP) defined on a random
graph, where the constraint on each node is that the posi-
tion within the cube of the sphere on that node be such that
it does not overlap with any of the other z interacting
spheres (that are linked on the graph). This model bridges
the gap between the field of random discrete CSP such as
the coloring problem [10,11] and disordered hard-sphere
packings [8]. Our approach thus provides an original way
to attack packing problems within mean-field theory. In
this Letter, we take the first steps in this direction by
studying numerically the model in d ¼ 2 and restrict our-
selves to the question of determining the differences be-
tween the Jamming and the glass transition.

Glassy behavior.—The low pressure or low density ‘‘liq-
uid’’ state can be discussed easily within the cavity method.
It just corresponds to considering the model on a tree in the
usual Bethe-Peierls way and ignoring long-range correla-
tions. A straightforward computation shows that the en-
tropy of the liquid state on a random graph of connectivity
z is Sliquid ¼ z logð1� �D2Þ=2, whereD is the diameter of

the spheres. Using a pressure �P conjugated to the sphere
‘‘volume’’ [8] V ¼ D2, this yields the equation of state for
the liquid P ¼ ðz�=2Þð1� �D2Þ�1. However, this equa-
tion is inconsistent at large pressures: indeed for P ¼ 1, it
yields a limiting value independent of the connectivity z,
which is unphysical, and where each sphere is in contact
with all its neighbors; this requires not only the number of
contacts to be much larger than the isostatic value, but also
the presence of a 2 coloring of the graph [8] and thus
violates rigorous results in graph theory: this proves that
a phase transition must occur at a finite pressure. It is
indeed possible to prove within the cavity method [12]
that the liquid phase is unstable towards a glass phase at
some finite pressure, and ongoing analytic work in this
direction shows that the system has a glass phase [12] of
the Random First Order kind for z sufficiently large, as
usual with frustrated models on such structures [9–14].
This is illustrated on Fig. 2 in a system with a slight
polydispersity [15] (in which case one should compute

the averaged Sliquid ¼ zlog½1� �ðR1 þ R2Þ2�=2 over the

distribution of radii PðRÞ): a clear signal of glass transition
with its compression rate dependence is observed.

Jamming.—We now turn to jammed configurations ob-
tained following the procedure of [7]: starting from small
particles, we ‘‘inflate’’ them infinitesimally and adjust their
positions to eliminate any (infinitesimal) overlap, until a
jammed state is obtained. At very large pressure, particles
are found to be either locally blocked by their neighbors (in
which case they have at least three contacts), or are ‘‘rat-
tlers’’ that can be displaced without moving the others [16].
The locally blocked particles have a subset that cannot be
displaced even with collective rearrangements–except
global translations. For our polydisperse system, this sub-
set turns out not to have redundant contacts, and hence
constitutes an isostatic core (see left panel of Fig. 3). We

find many states with slightly different densities, all of
which are isostatic and have indiscernible properties.
The jammed configurations have a spectrum of modes

that is strikingly similar to those found in the finite-
dimensional system [6,17,18]. In Fig. 3, we show the
vibration modes obtained by considering a soft potential
and a small superposition of particles that follows from
inflating the particles slightly beyond the jammed configu-
ration, as in [17]. A second, perhaps more satisfactory way
to study the vibrations of a hard-sphere ensemble is to
consider the very high pressure dynamics of hard particles
around a jammed state, and computing the displacement
correlations hAiji with Aij ¼ xiðtÞxjðtÞ � hxiihxji where

h�i denotes average over a time that is long yet insufficient
for escaping the vicinity of the jammed configuration. The
displacements fall into two classes: the many-particle vi-
brations that scale as P�1, and the rattlers that do not,
because the cages are roughly independent of the pressure.
The role of the frequencies in a potential is played by the

eigenvalues of P�1A�1=2. The spectrum of these eigenval-
ues is shown in Fig. 3: at infinite pressure, there is a
proliferation of soft modes, but as the volume fraction ’
is lowered, and the pressure becomes finite, the system
interacts, due to collisions and rattling, with more particles
than what is imposed by the isostaticity condition, and the
isostaticity-related soft modes start disappearing. Again,
this is in perfect agreement with the usual systems [6].
Jamming versus glass.—Having discussed the isostatic

packings with the standard J-point phenomenology
[6,7,17,19], as well as the mean-field glassy nature of our
model, we can now distinguish the ‘‘Jammed’’ and the
‘‘Glass’’ features as follows (Fig. 4). There is a liquid
equilibrium line, which terminates at the equilibrium glass
transition pressure PK. Below PK, the Gibbs measure is
dominated by a few of the deepest glassy states [3]. There
are also metastable ones (indicated by the horizontal lines),
which are stable (only) within the mean-field picture. As in

FIG. 2 (color online). Volume versus inverse pressure for a
system of N ¼ 4000 particles with z ¼ 100 and 9% polydisper-
sity. The choice of variables for the axes is to stress the analogy
with the more usual energy-temperature annealing plots. The
annealing curves follow the liquid analytical solution at low
pressures, but break away at the glass transition pressure Pg,

which is clearly visible.

PRL 103, 025701 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
10 JULY 2009

025701-2



any system with a dynamic transition, any compression
process ending at infinite pressure leads the system into a
metastable state. The ‘‘jamming line’’ fP ¼ 1; ’0 <’<
’Jg is the set of such (out of equilibrium) blocked configu-
rations. The slower the compression, the denser the target
state is, and one needs an infinitely slow process to reach
’0. In particular, we denote the J point ’J as the result of
the fastest compression starting from a random configura-
tion [7], which we expect to be different from the deepest
level ’0—just as a quench to zero temperature does not
terminate in the ground state of any complex system. In a
finite-dimensional system, only two lines in the phase
diagram are stable, apart from the liquid state: the jamming
line (at infinite pressure) and the equilibrium glass phase—
if it exists at all. Their only common point is (’0, P ¼ 1).

A measure of the criticality of a state is the staggered

displacement hPi
~�i ~xii=h produced by random forces ~fi ¼

h ~�i, with ~�i random unit vectors. This corresponds, in the
spin-glass literature, to the quantity ð1� qEAÞ=T. It is
proportional to �EA ¼ P2

P
i½hx2i ðtÞi � hxii2� ¼ P2TrðhAiÞ.

If! are the eigenvalues of P�1A�1=2 andQð!Þ the density
of modes, then �EA � R

d!Qð!Þ=!2. Because of the soft

modes [6], this quantity diverges on approaching the jam-
ming line when normalized this way, see inset of Fig. 3. A
perhaps more standard measure is the function �4ðt; t0Þ ¼P

ijAijðtÞAijðt0Þ. It has a maximum which diverges as the

system approaches either the jamming points (because of
the soft modes) or the equilibrium glass line, because of the
divergence of activation time (i.e., the time needed to
overcome a free-energy barrier).
Thinking in terms of landscape [8], the picture that

emerges is one of a system with many glassy states,
separated by high and wide free-energy barriers, as usual
in RFO models. Fragility and soft modes are a property of
the (infinite pressure) jammed configurations within each
of these states, but states are not marginal in the coarse-
grained view obtained as soon as temperature is nonzero
and the pressure finite (at least in all but the more super-
ficial ‘‘threshold’’ levels). This separation between large
valleys with critical bottom is consistent with the fact that
systems of frictionless particles at zero temperature are at
the same time fragile (even slight shear stresses make them
creep some amount) while still capable of resisting a shear
stress proportional to the pressure without flowing contin-
uously (they have internal friction [20].)
Jamming a crystal.—To unambiguously demonstrate

that a large stable state with an internal ‘‘fragile’’ structure
is possible in finite dimensions, and that the Jamming point
is of different nature than that of the glass transition, let us
finally consider an ordinary fcc crystal of spherical parti-
cles with very small (.003%) polydispersity. The crystal-

FIG. 4 (color online). A sketch of the density(’)-pressure (P)
plane in RFO models (see, e.g., [2,8,14]). Dynamic and static
transition pressures are Pd and PK. The glass phase and the
‘‘jamming line’’ (P ¼ 1, ’0 <’<’J) are clearly distinct. The
isostaticity-related quantity �EA is finite within a state if P is
finite (except perhaps for a small effect of acoustic modes in d ¼
2). In particular, it is finite within the ideal glass state, while it is
infinite on the jamming line. Everywhere in the trapezoidal
region delimited by the equilibrium line 0<P< Pd, the thresh-
old level, and the jamming line the activation time diverges (at
times exponential in N), and with it the four-point function �4.
In finite dimensions, �4 would only diverge strictly at the
jamming line (at finite times) and close to the glass line (at
times comparable to the activation time).
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FIG. 3 (color online). Left: Integrated pair correlation function
restricted to the collectively jammed core. The average number
of neighbors is four, as one expects from an isostatic system in
two dimensions. The inset shows a zoom in the small distance
region, the horizontal line is the isostaticity condition, while the
vertical line is the gradient descent step used to jam the system.
Right: Vibration modes with small overlaps (here noted D�DJ ,
difference between actual diameter of the particles and diameter
particles should have to be at jamming). The resulting spectrum
is almost identical to that of a particle system (cf. Fig. 1 of
Ref. [17]). Bottom: Hard particles: vibration modes of the
isostatic core, rescaled with the pressure. In the inset, gap in
the spectrum versus pressure scales as P�1=2. The curves are
virtually identical to those of a finite-dimensional system, as
obtained by Brito and Wyart [6]. These curves correspond to a
configuration with N ¼ 1000 and z ¼ 13.
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line order is hardly affected (see Fig. 5), and polydispersity
becomes irrelevant at finite pressures P. However, at P ¼
1, the system is isostatic and has a spectrum of soft modes
even richer than that of an amorphous packing. In an
amorphous solid, each one of the many equilibrium glass
states plays a similar role to the one of the crystal state
above, their very high pressure jamming properties being
juxtaposed with the underlying long-range glass order,
already established at finite pressure.

Conclusion.—We confront two different visions of
amorphous systems: a glassy solid state with order char-
acterized by a permanent, amorphous modulation of den-
sity—not unlike a crystal or a quasicrystal—and a
jamming situation brought about by chains of force asso-
ciated with actual contact between hard particles. These
two phenomena may coexist but are distinct. The fact that a
mean-field model reproduces both the glass transition and
J-point criticality in a separate way suggests that we
abandon the idea that the former is some kind of finite-
dimensional realization of the latter. The mean-field pic-
ture just above the glass transition pressure is one of large
basins separated by high barriers, without an excess of
truly zero frequency modes except perhaps at the least
deep states. The isostaticity-related marginality of the
jammed configurations appears only at very large pres-
sures, deep within a basin. This local criticality combined
with absence of criticality ‘‘in the large’’ is attested by the
paradoxical fact that amorphous matter is fragile to small
stresses but may still sustain extensive stresses without
flowing, a fact that can be understood easily in the example
of the polydisperse crystal. Perhaps the most evident mani-
festation of the different nature of the jamming (P ¼ 1)
and the glass lines is the fact that, although lengths such as
associated to four-point function �4 diverge in both, the

growth is astronomically slower approaching the glass
line from the liquid phase, than approaching the jamming
line [21].
In conclusion, we have introduced a set of new models

that can be studied analytically and numerically and that
provide nontrivial connections between different fields.
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FIG. 5 (color online). Left: A jammed configuration in the
polydisperse crystal (N ¼ 864). The distortion of the crystalline
order due to polydispersity is extremely weak. Right: Spectrum
of normal modes of the polydisperse crystal, obtained in the
same way as Fig. 3, central panel. There are many soft modes (to
be compared with Fig. 3). In inset: integrated pair correlation
function, including and excluding rattlers: the number of con-
tacts of nonrattlers is � 6.
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