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In this Letter, we study bosonic atoms at large scattering lengths using a variational method where the

condensate amplitude is a variational parameter. We further examine momentum distribution functions,

chemical potentials, the speed of sound, and spatial density profiles of cold bosonic atoms in a trap in this

limit. The latter two properties turn out to bear similarities to those of Fermi gases. The estimates obtained

here are applicable near Feshbach resonances, particularly when the fraction of atoms forming three-body

structures is small and can be tested in future cold atom experiments.
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Bose-Einstein condensates (BECs) near Feshbach reso-
nances have been one of the most exciting ultracold sys-
tems studied so far in experiments [1–9]. On one side of the
resonances where the scattering lengths are negative, fas-
cinating collapse-growth cycles due to thermal clouds and
spectacular controlled collapsing-exploding dynamics
have been observed [1–3] and studied theoretically [4].
On the other side, towards the resonances where the scat-
tering lengths are positive, strongly repulsive ultracold
bosonic atoms and their intriguing properties have been
explored [5–8]. Despite the reduced lifetime of the cold
gases in this limit due to enhanced three-body recombina-
tion, quite remarkable progress has been made to probe
interactions between atoms. Recently, pursuit in this direc-
tion has been revived, and more vigorous efforts have been
made [8,9]. Our theoretical studies in this Letter are mainly
motivated by these experiments. Bose gases at large posi-
tive scattering lengths have been a horrendously challeng-
ing topic in theoretical physics for more than half a century
[10–14]. The standard low density expansion that works
quite well for dilute gases is not applicable when the
scattering length a is comparable to or even larger than
the mean interparticle distance d. Here we suggest a varia-
tional approach which takes into account two-body corre-
lations and can be extended to the limit of a large positive
scattering length. We further apply this approach to esti-
mate various fundamental properties of cold bosonic atoms
near Feshbach resonances, particularly when the fraction
of atoms forming three-body structures is small. Unique
features in the momentum distribution function, chemical
potential, and speed of sound and the cold atom density
profile in a trap can be potentially probed in experiments.

Cold bosonic atoms at large scattering lengths were also
previously addressed in a few inspiring theoretical papers
[15,16]. Cowell et al. estimated chemical potentials and
condensate fractions by employing distinctly different
Jastrow wave functions [15]. There are a few intercon-
nected differences between their results and ours. First,
while the physics at distances much shorter than the mean
interparticle distance d is described quite accurately by the
Jastrow wave functions, basic aspects of the long wave-

length physics are not expected to be well captured. On the
other hand, our wave function is constructed under a con-
straint in Eq. (2) and captures essential features of low
energy collective properties of BECs. For instance, the
momentum distribution function nk has a 1

k divergence

near k ¼ 0 for all scattering lengths, and at short distances
our wave function is almost identical to the solution to the
Schrödinger equation for two interacting atoms. Second,
since the contribution to the depletion fraction, or the
fraction of atoms occupying nonzero momentum states,
is mainly from low energy states, we expect that our results
are more reliable. In fact, we find that the depletion fraction
reaches a constant value of about 0.5 near resonances. On
the contrary, the condensate fraction estimated in Ref. [15]
quickly reaches zero when the scattering length a becomes
comparable to d, suggesting that atoms could be com-
pletely depleted from the zero momentum state and there
should be an unexpected quantum phase transition at a
finite scattering length. Third, chemical potentials near
resonances estimated there appear to be bigger than the
values obtained in our calculations. This seems to imply
that the trial wave functions adopted here should be an
energetically better candidate for ground states.
The trial wave function in Eq. (3) effectively encodes

two-body correlations. To include high-order correlations
such as three-body effects, a much more sophistic ansatz is
needed. A nontrivial role of three-body interactions was
previously appreciated by Braaten et al. in Ref. [16], where
the effects on BECs were estimated in the limit of a small
scattering length. Although there was no definite evidence
of Efimov trimers in BECs of sodium or rubidium atoms
studied in Refs. [5–8], an earlier experiment on relaxation
rates of cesium atoms did show, as a precursor of two-body
resonances, additional structures which had been attributed
to Efimov states [17–20]. More efforts are to be made to
understand the nature of BECs in this limit, and the ap-
proach proposed below is a baby step towards this direc-
tion. Our results are valid when the three-body correlations
induced by Efimov trimers are not dominating. The ques-
tion of whether the emergence of Efimov trimers introdu-
ces distinct modulations to the scaling functions discussed

PRL 103, 025302 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
10 JULY 2009

0031-9007=09=103(2)=025302(4) 025302-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.103.025302


below, or mainly sets the lifetime of BECs, represents an
exciting new direction that is worth pursuing.

Moreover, our scaling hypothesis works best when the
typical range of interactions r0 is much less than the
interparticle distance d. When the density increases, devi-
ations from the scaling behaviors become substantial, and
the scaling functions proposed below are no longer suffi-
cient for characterizing BECs. Eventually, a quantum gas
might undergo a transition to a dense liquid phase when r0
becomes comparable to d. For cold atoms, this fortunately
occurs only at a density which is not experimentally ac-
cessible because of severe trap losses.

We consider bosonic atoms that interact with a short
range potential of range r0 and scatter at two-body scat-
tering lengths að>0Þ. For BECs with a number density �0,
assuming two-body effects are dominating, we can gener-
ally express the momentum distribution function nk and
the chemical potential � in terms of dimensionless func-

tions f and h, i.e., nk ¼ fðkd; ad ; r0d Þ, � ¼ �Fhðad ; r0d Þ, d ¼
ð 3
4��0

Þ1=3, and �F ¼ ð6�2�0Þ2=3
2m . For short range interactions,

r0 is much smaller than the mean interparticle distance d so
that we approximate r0

d to be zero, but a can vary over a

range from much smaller than d to much bigger than d.
Functions f and h thus depend only on two dimensionless
variables x ¼ kd and y ¼ a

d and are reduced to two scaling

functions fðx; yÞ and hðyÞ, respectively. The functional
form of fðx; yÞ and hðyÞ proposed in this way does not
depend on details of interaction potentials, number den-
sities, or scattering lengths and is universal; f and h
characterize basic properties of BECs. Note that, as illus-
trated below, the Fermi energy �F that is normally defined
for a Fermi gas with the same number density �0 turns out
to be the only relevant energy scale for BECs near
resonances.

When a is much smaller than d, these functions can be
obtained by using the standard mean field [11–14]. Indeed,
in the dilute limit when y is much less than unity, one can
verify that

fðx; yÞ ¼ 1

2

�
x2 þ 6yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2ðx2 þ 12yÞp � 1

�
; hðyÞ ¼

�
32

3�2

�
1=3

y;

gðyÞ ¼ 4ffiffiffi
3

p
�
y3=2; (1)

where we also introduce gðyÞ for the depletion fraction.
fðx; yÞ is divergent as

ffiffiffi
y

p
=x when x or momentum k

approaches zero; this behavior is an indication of gapless
soundlike collective excitations in BECs. Furthermore, that
fðx; yÞ decays as y2=x4 in the large-x or large-k limit
reflects the free particle nature of high energy excitations.
For cold atoms at large scattering lengths, y is substantial
and the form of f and h functions remains to be under-
stood. In the following, we are going to investigate these
scaling functions in the limit when a (or y) becomes
comparable to or bigger than d (or 1).

To quantitatively study f and h functions in the limit of a
large scattering length, we adopt a variational approach to
BECs. In this method, c0, the condensate amplitude, and
gk, k � 0, the pairing amplitude that is related to the
occupation number of atoms in a state of momentum k,
are variational parameters. We then minimize the energy
with respect to gk and c0 but with the total number of
atoms NT fixed.
To introduce trial wave functions which are viable in

both small and large scattering-length limits, we require
that at any given scattering length the ground state should
be a vacuum of Bogoliubov quasiparticles and is annihi-
lated by a set of quasiparticle operators

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� jgkj2
p âk � gkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� jgkj2
p ây�k

�
jg:s:i ¼ 0: (2)

Here âk (âyk) is an annihilation (creation) operator for an
atom with momentum k. Detailed structures of the quasi-
particle operators are specified by real variables gk and
will be determined variationally below. The ansatz that
satisfies Eq. (2) can be written as

jg:s:i ¼ A�1=2 expðc0ây0 Þ
Y

k�ẑ>0

expðgkâykây�kÞj0i: (3)

Here A is the normalization factor. Again c0 is the con-
densation amplitude and gk is the pairing amplitude with
jgkj< 1; for ground states, we further assume g�k ¼ gk.
This trial wave function encodes two-body correlations but
not three-body ones. Similar wave functions have been
used to study pair condensates of attractive bosons [21].
nk, the occupation number of atoms with momentum k, is
a simple function of gk:

nk ¼ hâykâki ¼
jgkj2

1� jgkj2
: (4)

The Hamiltonian of cold bosons is

H ¼ X
k

�kâ
y
kâk þ 1

2

X
k1;k2;q

âyk1þqâ
y
k2�qUðqÞâk1

âk2
; (5)

UðqÞ ¼ 1
�

R
d3rUðrÞ expðiq � rÞ is a two-body interaction

potential, and � is the volume of the system. The total
energy ET of the trial state jg:s:i is evaluated to be

ET ¼
X
k

�k
jgkj2

1�jgkj2
þUð0Þ

2
jc0j4þ

X
k;q�0

Uðk�qÞþUð0Þ
2

� jgkj2
1�jgkj2

jgqj2
1�jgqj2

þ X
k;q�0

Uðk�qÞ
2

g�q
1�jgqj2

� gk
1�jgkj2

þX
q�0

UðqÞþUð0Þ
2

2jgqj2
1�jgqj2

jc0j2

þX
q�0

UðqÞ
2

c20g
�
qþc�20 gq

1�jgqj2
: (6)

To facilitate discussions on large scattering lengths, we
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assume that the interaction potential is a square well one,
UðrÞ ¼ �U when r < r0, but otherwise is zero. The cor-

responding s-wave scattering length is a ¼ r0 �
tanð ffiffiffiffiffiffiffiffi

mU
p

r0Þ=
ffiffiffiffiffiffiffiffi
mU

p
. We choose the depth of the potential

U to be �=2<
ffiffiffiffiffiffiffiffi
mU

p
r0 <� so that r0 < a<1.

To obtain ground states, we minimize the total energy in
Eq. (6) with respect to parameters gk and c0, subject to a
constraint that the total number NT is fixed:

NT ¼ jc0j2 þ
X
k�0

jgkj2
1� jgkj2

: (7)

When the potential is weakly repulsive, we verify that the
minimization does lead to the standard results for weakly
interacting BECs, i.e., Eq. (1). For attractive potentials
introduced above, the minimization is carried out numeri-
cally. When scattering lengths are positive, one of the
energy minima turns out to be a collection of molecules
as expected from a two-body consideration; in these mo-
lecular states, the condensate amplitude is found to be zero
and jgkj is less than unity for all k. To understand BECs of
scattering atoms in open or nonmolecular channels that are
most relevant to experiments on cold atoms, we project
away the molecular states and minimize the energy in the

subspace of scattering channels. This is achieved by im-
posing a projection constraint on gk:

P
kg

mol
k g�k ¼ 0,

where gmol
k are the calculated values of gk for molecular

states. This vanishing inner product between molecular
states and states of atoms effectively projects out a desired
subspace of open channels.
Below, we present results for BECs with different den-

sities and scattering lengths. The minimization algorithm
does converge leading to a ground state in the subspace
when we set gk þ 1 to be proportional to k in the close
vicinity of k ¼ 0 [22]. We further find that gk decays as 1

k2

in the large-k limit for all scattering lengths. Following the
relation between gk and nk in Eq. (4), one then obtains the
asymptotics of nk in both large-k and small-k limits. The
characteristics in these two limits are robust and, when the
scattering length a is tuned, remain the same as those in
Eq. (1). However, the crossover energy between these two
limits, which is approximately the chemical potential,
strongly depends on the scattering lengths or densities
(see Fig. 1). When plotted against x ¼ kd, data for nk or
nðkÞ calculated for different densities and scattering
lengths all collapse to a single set of curves which corre-
spond to fðx; yÞ for different y ¼ a

d . Furthermore, we ob-

serve that the function nðkÞ ¼ fðx; yÞ quickly approaches
f1ðxÞ when y exceeds unity. Using the momentum distri-
bution function, we also estimate gðyÞ, the fraction of
atoms that are depleted from the zero momentum state;
gðyÞ saturates at a constant value near resonances.
The chemical potential is studied by evaluating � ¼

@ET=@NT . In the limit of a large scattering length, the
main characteristic is that � saturates at a value of around
80% of the Fermi energy �F of the corresponding density.
When the chemical potential in units of �F is plotted
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FIG. 1 (color online). The momentum distribution function
nðkÞ for different interparticle distance d and scattering length
a [in units of r0, the range of interaction, and in (a), k is in units
of @=r0]. In all cases, nðkÞ has a desired 1=k divergence when k
approaches zero. In (b), nðkÞ functions for different d but with
the same value of y ¼ a

d are further shown to collapse to a single

scaling function when plotted against x ¼ kd. The resultant
three curves are for fðx; yÞ with y ¼ 0:1, 1, and 10 (from bottom
to top). Depletion fraction gðyÞ is plotted in the inset; the mean
field (MF) gðyÞ in Eq. (1) is also shown as a reference.
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FIG. 2 (color online). Chemical potentials � and sound veloc-
ities vs as a function of scattering length. (a) is for � (in units of
1=2md2), d ¼ 50 versus a (d and a are in units of r0); in (b) we
further plot � in units of the Fermi energy �F as a function of
y ¼ a=d and illustrate two plots in (a) collapse into a single
scaling curve. The resultant plot defines the scaling function
hðyÞð¼ �=�FÞ for an arbitrary y. The dashed line is for hðyÞ in
Eq. (1). Shown in the inset is vs (in units of the Fermi velocity
vF) versus a=d.
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against scattering lengths y ¼ a
d , all data again collapse to

a single master curve which quantitatively defines the
scaling function hðyÞð¼ �

�F
Þ introduced above, and hðyÞ

approaches 0.8 once y becomes much bigger than unity
(see Fig. 2). vs, the speed of sound that depends on the
compressibility of BECs, can also be obtained by using the
general relation v2

s ¼ �0=mð@�=@�0Þ.
The scattering-length dependence of the chemical po-

tential discussed here implies a very peculiar evolution of
sizes of BECs in a trap (with a harmonic length LHO) when
scattering lengths a are increased. In the limit of a small
scattering length, the size of condensates increases as a
function of scattering length a, and themean field Thomas-

Fermi radius in a spherical trap is RTF=LHO ¼
ð15NTa=LHOÞ1=5 [23]. As the chemical potential saturates
at a value of 0:8�F when scattering lengths become much
larger than the typical interparticle distance in a trap, the
radius of the BECs in this strongly interacting regime is
also expected to approach a value of

R

LHO
¼ AN1=6

T : (8)

Numerical calculations further show that A ¼ 1:9. As an-
other application of our variational approach, we quantita-

tively investigate radii of BECs near resonances using a
local density approximation (see Fig. 3).
In conclusion, we have examined basic properties of

cold bosonic atoms at large scattering lengths. Using the
variational method, we estimate various properties that can
be potentially tested in future cold atom experiments. Near
resonances, we have found that the chemical potential,
speed of sound, and the spatial density profile of cold
bosons in a trap resemble the corresponding properties of
Fermi gases. This particular aspect is also a unique feature
of one-dimensional Tonks-Girardeau gases where bosons
are viewed as fermionized particles [24–26]. Our results
are applicable near Feshbach resonances but before the
Efimov physics fully sets in.
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FIG. 3 (color online). (a) Radius R of BECs in a spherical
harmonic trap with harmonic length LHO as a function of
scattering length a; the dashed line is the mean field Thomas-
Fermi radius RTF [see discussions before Eq. (8)]. (b) Spatial
density profiles in a harmonic trap at different scattering lengths;
the density at the center �ð0Þ is estimated to be �ð0Þa3 ¼
0:00012, 0.038, 0.24, and 180 for the dashed-dotted, dashed,
dotted, and solid line, respectively. In the inset, we also plot the
mean field result (black dashed line) for �ð0Þa3 ¼ 180 for a
comparison. In (a) and (b), the total number of atoms is set to be
NT ¼ 2� 106.
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