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Hydrodynamics and collision-dominated transport are crucial to understand the slow dynamics of many

correlated quantum liquids. The ratio �=s of the shear viscosity � to the entropy density s is uniquely

suited to determine how strongly the excitations in a quantum fluid interact. We determine �=s in clean

undoped graphene using a quantum kinetic theory. As a result of the quantum criticality of this system the

ratio is smaller than in many other correlated quantum liquids and, interestingly, comes close to a lower

bound conjectured in the context of the quark gluon plasma. We discuss possible consequences of the low

viscosity, including preturbulent current flow.
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Graphene [1,2], attracts a lot of attention due to the
massless relativistic dispersion of its quasiparticles and
their high mobility. Recently, it was shown that this mate-
rial offers a unique opportunity to observe transport prop-
erties of a plasma of ultrarelativistic particles at moderately
high temperatures [3]. Undoped graphene is located at a
special point in parameter space where the Fermi surface
shrinks to two points, and in many respects it behaves
similarly as other systems close to more complex quantum
critical points [4]. Because of its massless Dirac particles
graphene also shares interesting properties with the ultra-
relativistic quark gluon plasma. The latter, surprisingly, has
an unexpectedly low shear viscosity, as was observed in the
dense matter balls created at the relativistic heavy ion
collider RHIC [5]. We show here that an analogous prop-
erty can be found in undoped graphene, reflecting its
quantum criticality.

The shear viscosity � measures the resistance of a fluid
to establishing transverse velocity gradients; see Fig. 1.
The smaller the viscosity, the higher the tendency to tur-
bulent flow dynamics. Viscosity, similarly as resistivity in a
conductor, leads to entropy production by degrading in-
homogeneities in the velocity field. While ideal fluids with
� ¼ 0 cannot exist, it is interesting to seek for perfect
fluids which come as close as possible to this ideal.

Viscosity has the units of @n, where n is some density. To
quantify the magnitude of the viscosity, it is natural to
compare �=@ to the density of thermal excitations, nth,
which can be estimated by the entropy density, s� kBnth.
Motivated by the nearly perfect fluid behavior seen in the
RHIC experiments, Kovtun et al. have recently postulated
a lower bound for the ratio of � and s for a wide class of
systems [6]:

�=s � 1

4�

@

kB
: (1)

Equality was obtained for an infinitely strongly coupled
conformal field theory by mapping it to weakly coupled

gravity using the AdS-CFT correspondence. While ex-
amples violating the bound (1) were found (see [7]), the
existence of some lower bound with kB�=@s of order unity
for a given family of fluids is not unexpected. It is analo-
gous to the Mott-Ioffe-Regel limit for the minimum con-
ductivity of poor metals [8,9], and to the saturation of the
relaxation rate at ��1

rel ¼ kBT=@Oð1Þ close to strongly

coupled quantum critical points [10]. In all these cases an
exhaustion of scattering channels and a saturation of the
kinetic coefficients occurs, once the mean free path be-
comes comparable to the interparticle distance. It follows,
that the ratio �=s is a unique indicator for how strongly the
excitations in a fluid interact.
While effects due to electron-electron interactions only

amount to very small additive corrections to the conduc-
tivity �ð!; TÞ in the collisionless optical regime @! �
kBT [3,4,11], collisions are crucial in the opposite regime
@! � kBT [3,12]. There they establish local equilibrium,
the remaining low frequency dynamics being governed by
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FIG. 1 (color online). (a) Velocity profile u and associated
Stokes force density fs ¼ �r2u counteracting the current
flow. (b) Inhomogeneous current flow expected in a four-contact
geometry with split source and drain contacts held at voltage
�V=2. In the absence of viscous and other nonlocal effects, the
current would be proportional to the applied voltage V, inde-
pendent of the distance L between the contacts. Viscous effects
diminish the current as L decreases.
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hydrodynamics, i.e., by the slow diffusion of the densities
of globally conserved quantities. Clearly, a hydrodynamic
description works best when collisions are frequent and the
fluid is strongly correlated. Transport in such a regime
reveals information about the nature of the excitations.
Examples range from the two He-isotopes [13,14], cold
atomic gases [15,16] and electrons in semiconductors and
metals [17,18], extending all the way to the high energy
regime of the quark gluon plasma [5] and matter in the
early universe [19].

In graphene, for energies below a few electron volts, the
electronic properties are governed by the Hamiltonian

H ¼ X
l

vp̂l � �þ 1

2

X
l;l0

e2

�jrl � rl0 j ; (2)

with the Fermi velocity v ’ 108 cm=s [2]. p̂l ¼ �i@rrl is

the momentum operator, l ¼ 1; . . . ; N labels the N ¼ 4
spin and valley (2 Fermi points) degrees of freedom, and
� ¼ ð�x; �yÞ are the Pauli matrices acting in the space of

the two sublattices of the honeycomb lattice structure.
Without the Coulomb interaction, Eq. (2) is the
Hamiltonian of N species of free massless Dirac particles
[20]. The strength of the Coulomb interaction is charac-

terized by the effective fine structure constant � ¼ e2

�@v ’
2:2=�, which is not small for realistic values of the sub-
strate dielectric constant �. Key for an understanding of
clean, undoped graphene is the fact that it is a ‘‘quantum
critical’’ system with marginally irrelevant Coulomb inter-
actions which renormalize logarithmically to zero
[3,4,11,21–24]. This quantum critical behavior in undoped
graphene is responsible for the distinctly different behavior
of the collision-free and collision-dominated frequency
regimes [25].

Collision-dominated transport can most efficiently be
addressed by solving the Boltzmann transport equation

�
@

@t
þ 1

@

@"k�
@k

� rx � 1

@

@"k�
@x

� rk

�
f ¼ �J coll½f� (3)

for the quasiparticle distribution function f ¼ f�ðk;x; tÞ,
which depends on momentum k, position x, time t and
band index � ¼ � (labeling upper and lower parts of the
Dirac cones centered at the two Fermi points). Equation (3)
can be derived from a nonequilibrium quantum many body
approach, yielding the collision integral J coll in terms of
the Coulomb interaction [3]. The moments of the distribu-
tion function yield the conservation laws for the charge
density, @t�þr � j ¼ 0, the momentum density,

w

v2 ½@tuþ ðu � rÞu� þ rpþ @tp

v2
uþ fs ¼ 0; (4)

and the energy density ". j is the current density and u the
velocity field of the fluid with enthalpy densityw ¼ "þ p,
where p is the pressure. For undoped graphene the Gibbs-
Duhem relation implies furthermore w ¼ Ts. Equation (4)
is the Navier-Stokes equation for graphene, derived under
the assumption juj � vF. Compared to nonrelativistic

hydrodynamics there is an extra relativistic term /@tp,
but at low frequencies its effect is small. The Stokes force
fsj ¼ @iTij ¼ �r2uj is determined by the leading dissipa-

tive contribution to the stress tensor:

Tij ¼ �Xij þ 	
ijr � u; (5)

in an expansion in gradients of u. Here Xij ¼ @ui=@xj þ
@uj=@xi � 
ijr � u corresponds to a pure shear flow while

the second term is a volume compression. � and 	 are the
shear and bulk viscosity, respectively.
In what follows we include all contributions to J coll up

to order �2, keeping in mind that � flows to zero as T ! 0.
Assuming a slowly varying, divergence free velocity field
uðrÞ, we determine the shear viscosity by computing the
stress tensor in linear response. Close to equilibrium, an
inhomogeneous flow field constitutes a driving term in
Eq. (3) of the form vk;� � rxf� ¼ P

ij�ijXji with

�ijðk; �Þ ¼ "k�
kBT

e�"k�

23=2ðe�"k� þ 1Þ2 IijðkÞ: (6)

Here, vk;� ¼ rk"k�=@ is the velocity of quasiparticles

with energy "k�, �¼1=kBT and IijðkÞ¼
ffiffiffi
2

p ðkikj
k2

� 1
2
ijÞ.

In linear response, the distribution function can be parame-
trized as

f�ðk; tÞ ¼ 1

expð�½"k� � @
P
ij
Xijgjiðk; �; tÞ�Þ þ 1

	 feq þ feqð1� feqÞ�@
X
ij

Xijgji; (7)

where feq ¼ f�ðkÞjgij¼0. Linearizing the Boltzmann equa-

tion in the zero frequency limit, it can be cast into an
operator formulation: j�i ¼ Cjgi [26,27]. The operator C
is Hermitian with respect to the inner product hajbi ¼
ð8�2Þ�1

P
ij;�

R
d2kaijðk; �Þbjiðk; �Þ. The gijðk; �Þ pa-

rametrize the nonequilibrium distribution function and
are obtained by inverting the operator C. Using them to
express the stress tensor and comparing with Eq. (5) one
obtains the shear viscosity

� ¼ NðkBTÞ2ffiffiffi
2

p
@v2

h�jC�1j�i: (8)

The dominant contribution to � comes from the smallest
eigenvalues of C restricted to functions given by Eq. (6).
The inversion of the collision operator can be a formidable
problem and usually requires a numerical solution. The
problem simplifies, however, in two dimensions where the
amplitude for collinear scattering processes (involving
quasiparticles with identical velocity vector) is logarithmi-
cally divergent. Screening effects of higher order in � and
lifetime effects cutoff this divergence in the infrared at
transverse momenta of order �T=v [3,12]. To logarithmic
accuracy in �, we can thus consider collinear scattering
processes only. The corresponding restricted operator pos-
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sesses three zero modes:

gðnÞij ðk; �Þ ¼ cðnÞIijðkÞ; gðÞij ðk; �Þ ¼ cðÞ�IijðkÞ;
gðEÞij ðk; �Þ ¼ cðEÞ�jkjIijðkÞ;

(9)

which reflect the conservation of charge n, chirality  (the
total number of particles and holes) and energy E in col-
linear processes. This conservation is exact for the modes

gðn;EÞ, while it holds only to lowest order in � for gðÞ,
being due to kinetic constraints on the two-body scattering
of massless Dirac particles (see [28] for a related discus-
sion). Equation (7) shows that these modes correspond to
distribution functions which, when restricted to quasipar-
ticles with identical velocity v ¼ ve, reduce to equilibria
with direction dependent parameters �ðeÞ, ’ðeÞ, TðeÞ
conjugate to the conserved quantities.

If there were only collinear scattering processes, the
shear viscosity would be infinite. However, the inclusion
of other processes causes � to be finite. Nevertheless, the
dominance of collinear scattering allows us—in leading
logarithmic approximation—to invert the operator C within
the Hilbert space spanned by the modes (9). At zero
doping, a divergence free velocity field does not excite

the mode gðnÞij , and the relevant subspace is only two-

dimensional. This inversion is easily done and yields

h�jC�1j�i ¼ C� 2�3=2��2. The remaining numerical co-

efficient C� stems from the evaluation of the matrix ele-

ments of the full scattering operator in the 2d subspace of

g
E;
ij and is expected to be of order unity. We obtain C� ’

0:449, consistent with this expectation. The ��2 depen-
dence follows from the fact that the collision operator C is
of second order in �. The shear viscosity of graphene
finally results as

� ¼ C�

NðkBTÞ2
4@v2�2

�
1þO

�
1

log�

��
; (10)

which is the central result of this Letter. It can be ration-
alized by using the Fermi liquid result [13]�FL ’ nmv2�rel
with n ! nthermal ’ ðkBT=@vÞ2, relaxation rate ��1

rel ’
kBT=ð@�2Þ [3] and typical energy mv2 ! kBT.
Extending the analysis beyond the leading approximation
by regularizing the logarithmic divergence in the forward
scattering and including more modes gij, we obtain cor-

rections of relative size 1= logð1=�Þ. For � ¼ 0:1 they
increase the leading result (10) by only 20%.

We need to keep in mind that the quasiparticle are not
free, their dispersion reflecting the renormalization of the
velocity v ! v½1þ �

4 logð�=kÞ�, where � is an appropri-

ate UV scale. We implement this by a renormalization
group approach combined with scaling laws for physical

observables. The coupling constant evolves as �ðTÞ ’
4= logT�

T (with T� ¼ @v�
kB

) while the velocity grows loga-

rithmically vðTÞ ¼ v�=�ðTÞ. However, the combination
½�v�ðTÞ entering � does not change under renormalization

[29]. Thus, Eq. (10) is the correct low temperature result
for the renormalized quasiparticles.
On the other hand, the entropy density of noninteracting

graphene, including renormalization effects, is [4]

s ¼ 9	ð3Þ
�

kB
k2BT

2

ð@v�Þ2 �
2ðTÞ: (11)

The above finally results in the sought ratio:

�=s ¼ @

kB

C��

9	ð3Þ
1

�2ðTÞ ’ 0:008 15

�
log

T�

T

�
2
: (12)

As T ! 0 the ratio �=s grows, a behavior expected for a
weakly interacting system. However, since � is only mar-
ginally irrelevant �=s grows only logarithmically. In con-
trast, in the regime T � � of doped graphene with a finite
carrier density n, one obtains the usual behavior of a
degenerate Fermi liquid [13,18] with �� @nð�=TÞ2 and
s� kBnT=�, in which case �=s� ð@=kBÞð�=TÞ3 diverges
much more strongly at low T; see Fig. 2. Higher order
corrections of the long range Coulomb interaction [24]
mainly reduce the regime where �ðTÞ decreases logarith-
mically (they effectively reduce T�). This further de-
creases the ratio �=s. Similarly, additional short range in-
teractions g yield leading additive corrections /�gðT=T�Þ
to the collision operator. Their effect is small provided that
they do not lead to an excitonic insulator and the low
energy physics of massless Dirac particles is preserved
[30].
Note the small numerical prefactor in (12). As shown in

Fig. 2, it keeps the ratio �=s small in a large temperature
regime, where it approaches the value of Eq. (1). As was
shown recently, cold atoms with diverging scattering
length are materials which also come close to the value
(1) [15,16]. Our result shows that, interestingly, graphene
has an even smaller ratio �=s, thus being an even ‘‘more
perfect’’ liquid than those critical systems. We envision

FIG. 2 (color online). Ratio �=s in graphene as a function of
T. The UV cut-off was taken to be T� ¼ 8:34
 104 K follow-
ing [4]. In the undoped, quantum critical system �=s is very
small in a large temperature window where the coupling �ðTÞ
remains of order Oð1Þ. The value 1=4� obtained for some
strongly coupled critical theories is shown for comparison. As
shown in the inset, away from zero doping and quantum criti-
cality (T < j�j), the viscosity assumes the behavior of a degen-
erate Fermi liquid, �=s� ðj�j=TÞ3.
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interesting experimental manifestations of viscous effects
in graphene, especially in the conductance properties of
very clean samples. Viscous drag should result in a de-
crease of the conductance with the linear size of geometries
such as in Fig. 1, where two spatially separated contacts
take the role of the source and the drain, respectively.
Applying a source-drain bias V to these split contacts
induces an inhomogeneous current flow and corresponding
Stokes forces that oppose it. The smaller the spatial scale
L, the larger the viscous forces, and hence one expects an
increasing resistance. The latter would be scale invariant in
the absence of viscous forces and other nonlocal effects on
conductivity [31].

The unusually low viscosity in graphene suggests the
interesting possibility of electronic turbulence in this ma-
terial. For simplicity we consider fluid velocities small
compared to the Fermi velocity, and analyze the low fre-
quency limit of the Navier-Stokes Eq. (4). Turbulence
arises from the nonlinearities /ðu � rÞu while dissipation
due to the Stokes forces suppress turbulent flow for large�.
The dimensionless number determining the relative
strength of these two effects is the Reynolds number,

Re ¼ s=kB
�=@

kBT

@v=L

utyp
v

; (13)

where we assumed a typical fluid velocity utyp and a

characteristic length scale L for the velocity gradients.
Thus, the ratio �=s reveals itself as the key characteristic
determining the Reynolds number, apart from geometrical
factors, typical energies and velocities. To observe turbu-
lence one needs Re> 103 � � � 104 in 3d, and somewhat
higher values in 2d. However, even for lower Re ’
10 � � � 102 two-dimensional flow in the presence of ex-
tended defects or nanosized obstacles undergoes complex
phase locking phenomena and chaotic flow [32]. Applying
strong bias fields to graphene, fluid velocities of the order
utyp ’ 0:1v can be achieved [33], while still avoiding the

onset of non-Ohmic effects. In the collision-dominated
regime of undoped graphene the fluid velocity induced
by a field E scales like u=v� eE@v=ðkBTÞ2. Hence, the
Reynolds number increases as 1=T with decreasing T,
enhancing the tendency towards turbulence. With flow
velocities as estimated above we expect complex fluid
dynamics as in Ref. [32] already on small length scales
of the order of L� 1 �m. This would constitute a striking
manifestation of the quantum criticality of graphene and
could be relevant for potential nanoelectronics applications
of this exciting material.
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