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An ultrabright high-power x- and �-radiation source is proposed. A high-density thin plasma slab,

accelerating in the radiation pressure dominant regime by an ultraintense electromagnetic wave, reflects a

counterpropagating relativistically strong electromagnetic wave, producing extremely time-compressed

and intensified radiation. The reflected light contains relativistic harmonics generated at the plasma slab,

all upshifted with the same factor as the fundamental mode of the incident light. The theory of an

arbitrarily moving thin plasma slab reflectivity is presented.
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The interaction of an electromagnetic (EM) wave with a
relativistic mirror was used by Einstein to illustrate the
basic effects of special relativity [1]. In modern theoretical
physics the concept of a relativistic mirror is used for
solving a wide range of problems, such as the dynamical
Casimir effect [2], the Unruh radiation [3], and other non-
linear vacuum phenomena. Relativistic plasma whose dy-
namics is governed by strong collective fields provides
numerous examples of moving mirrors which can acquire
energy from copropagating EMwaves or transfer energy to
reflected counterpropagating EM waves (see [4] and refer-
ences therein). Relativistic mirrors formed by wake waves
for an EM wave intensification [5] result in an increase of
the electric field of the wave so that it can reach the
Schwinger limit where electron-positron pairs are created
from the vacuum and the vacuum refractive index becomes
nonlinearly dependent on the EM field strength [6]. In the
concepts of the sliding mirror [7], oscillating mirror [8],
flying mirror [5], and other schemes [9], the laser plasma
serves as a source of ultrashort pulses of extreme ultravio-
let radiation and x rays.

In this Letter we present the concept of the accelerating
double-sided mirror (Fig. 1) which efficiently reflects the
counterpropagating relativistically strong EM radiation.
The role of the mirror is played by a high-density plasma
slab accelerated by an ultraintense laser pulse (the driver)
in the radiation pressure dominant regime (synonymous to
the laser piston regime) [10]. The plasma slab with the
Lorentz factor � � 1 reflects the copropagating driver,
taking a substantial fraction of its energy, �1� ð2�Þ�2

[10]. The plasma slab acts as a mirror also for a counter-
propagating relativistically strong EM radiation (the
source), transferring the energy to the reflected light. The
source pulse should be sufficiently weaker than the driver;
nevertheless it can be relativistically strong. Exhibiting the
properties of the sliding and oscillating mirrors, the plasma
slab produces relativistic harmonics. In the spectrum of the
reflected radiation, the fundamental frequency of the inci-
dent radiation and the relativistic harmonics generated at
the plasma slab are multiplied by the same factor, �4�2

(Fig. 1). In order to illustrate the proposed concept, we
present two approaches which emphasize different aspects:
the two-dimensional particle-in-cell simulation of a plasma
slab interaction with two counterpropagating laser pulses
and the analytical theory of the reflectivity of an arbitrarily
moving thin plasma slab. Compared with previously dis-
cussed schemes, the double-sided mirror concept benefits
from a high number of reflecting electrons (since the
accelerating plasma slab initially has solid density and
can be further compressed during the interaction) and
from the multiplication of the frequency of all the harmon-
ics (since the interaction is strongly nonlinear and the
mirror is relativistic).
In order to investigate the feasibility of the double-sided

mirror concept we performed two-dimensional particle-in-
cell simulations [11] using the relativistic electromagnetic
particle-mesh code (REMP) based on the density decom-
position scheme. The driver laser pulse with the wave-
length of �d ¼ � ¼ 2�c=!, the intensity of Id ¼
1:2� 1023 W=cm2 � ð1 �m=�Þ2, corresponding to the
dimensionless amplitude of ad ¼ 300, and the duration
of �d ¼ 20�=! is focused with the spot size of Dd ¼
10� onto a hydrogen plasma slab placed at x ¼ 10�
with the thickness of l ¼ 0:25� and transverse size of
28� and initial electron density of ne ¼ 480ncr ¼ 5:4�
1023 cm�3 � ð1 �m=�Þ2. The driver pulse shape is
Gaussian but without the leading part, starting 5� from
the pulse center along the x axis. It is p polarized; i.e., its
electric field is directed along the y axis. At the time t ¼ 0,
when the driver pulse hits the plasma slab from the left
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FIG. 1 (color). The accelerating double-sided mirror.
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(x < 10�), the source pulse arrives at another side of the
slab from the right (x > 10:25�). The s polarized source
pulse (its electric field is along the z axis) has the same
wavelength as the driver pulse. Its intensity is Is ¼ 1:2�
1019 W=cm2 � ð1 �m=�Þ2, corresponding to the dimen-
sionless amplitude of as ¼ 3, its duration is �s ¼ 120�=!,
and its waist size is Ds ¼ 20�. The source pulse has a
rectangular profile along the x and y axes. The use of a
circularly polarized driver pulse may provide a smoother
start of the slab acceleration [12]; nevertheless, it was
chosen to be p polarized in order to easily distinguish
between the driver and the source pulses. In addition, our
choice demonstrates the robustness of the double-sided
mirror effect. The simulation box has the size of 50� and
32� and the mesh size is �=128 and �=16 along the x and y
axis, respectively. The number of quasiparticles is 106. The
simulation results are shown in Figs. 2 and 3, where the
spatial and time units are the laser wavelength and wave
period, respectively.

The driver laser makes a cocoon where it stays confined
[Fig. 2(a)]. At t ¼ 37� 2�=!, the ions are accelerated up
to 2.4 GeV, while the majority of fast ions carry the energy
about 1.5 GeV, as seen from the ion energy spectrum in
Fig. 2(b). The cocoon structure reveals itself as a loop-
shaped pattern in the ion angular distribution, shown in
gray scale in Fig. 2(b) where � is an angle between the x
axis and the ion momentum. The accelerating plasma
reflects the source pulse, which becomes chirped and com-
pressed about 10 times [Fig. 2(a)]. As the mirror velocity,

c�, increases, the reflected light frequency grows as ð1þ
�Þ=ð1� �Þ; thus, the electric field profile along the x axis
becomes more and more jagged [Fig. 3(a)]. A portion of
the source pulse reflected from the curved edges of the
expanding cocoon acquires an inhomogeneous frequency
upshift determined by the angle of the reflecting region.
The divergence angle of the reflected radiation is deter-
mined not only by the mirror curvature but also by the
mirror velocity due to relativistic effects. The greater the
velocity, the smaller the divergence angle is. The diver-
gence can be improved via transverse shaping of the laser
pulse, in a similar way as a usage of a super Gaussian pulse
can improve the accelerated ion energy distribution.
At the beginning, the magnitude of the reflected radia-

tion is higher than that of the incident source (�3 times),
due to an enhancement of the reflectivity of the plasma slab
compressed under the radiation pressure exerted by the
driver and source pulses. In an instantaneous proper frame
of the accelerating mirror, the frequency of the source
pulse increases with time; thus, the mirror becomes more
transparent. Correspondingly, the source starts to be trans-
mitted through the plasma more efficiently, as seen in
Fig. 2(a).
The reflected radiation has a complex structure of the

spectrum. It contains not only the frequency-multiplied
fundamental mode of the source pulse but also high har-
monics. Figure 3(b) shows the modulus of the spe-
ctrum, jI!ðtÞj, of the Ez component of the EM radi-
ation emitted in the direction of the x axis, taken for each

moment of time, t, with the Gaussian filter, I!ðtÞ ¼Rþ1
�1 Ezð�Þe�i�!�c2ð��tÞ2=�2

d�. Harmonics generation can

be identified directly from the Ez component of the electric
field along the x axis. In Fig. 2(c), we see characteristic
high-frequency modulations in the first two consecutive
cycles of the reflected radiation. The later cycle is com-
pressed together with its harmonics in comparison with the
earlier cycle, indicating that the reflected radiation spec-

FIG. 2 (color). (a) The electric field y and z components
representing driver and source pulses, respectively, and the ion
density (black). According to the scheme in Fig. 1, the mirror
accelerated by the driver reflects the counterpropagating source,
boosting its frequency and harmonics. (b) The ion energy
spectrum (curve) and angular distribution (gray scale). Both
the frames for t ¼ 37� 2�=!. (c) The electric field z compo-
nent: the first two reflected cycles overlapped with the source
pulse at t ¼ 4� 2�=!.

FIG. 3 (color). (a) The electric field component Ez along the
x axis representing the reflected radiation (emitted in the x axis
direction) for t? ¼ 32� 2�=!. (b) Color scale: the correspond-
ing spectrum modulus taken for each t with the Gaussian filter
with width �=c. Dashed curves: the odd harmonics frequency
multiplied by the factor ð1þ �Þ=ð1� �Þ calculated from the
fast ion spectrum maximum. Modes aliasing occurs at later times
due to the fixed width of the filter and a fast change of the
frequency multiplication factor.
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trum is also enriched by a continuous component due to the
mirror acceleration.

The shift of the harmonics in time due to the mirror
acceleration is seen in Fig. 3(b), were we superimpose the
time dependence of the frequency multiplication factor,
ð1þ �Þ=ð1� �Þ, multiplied by odd harmonic frequencies,
on the spectrum obtained in the simulation. The dimen-
sionless velocity � corresponds to the local maximum of
the ion energy spectrum, at the top of the cocoon structure,
calculated at the time of emission, �, related to the detec-
tion time, t, via equation t ¼ t? þ �� R

�
0 �ð�Þd�, where

t? is determined by the detector position.
The high-harmonics generation efficiency is optimal for

a certain areal density of the foil, according to the condi-
tion as � nelre�s [7], where re ¼ e2=mec

2 is the classical
electron radius. Initially far from this condition, the accel-
erated plasma slab satisfies it at a certain time, when
harmonics are generated most efficiently.

In order to analytically describe the reflected EM
wave we use the approximation of an infinitely thin foil
(see also Refs. [5,7]), representing a mirror moving along
the x axis with the coordinate XMðtÞ. We consider the one-
dimensional Maxwell equation

@2A
@t2

� c2
@2A
@x2

þ 4�e2nel�½x� XMðtÞ�
me�M

A ¼ 0; (1)

where �M ¼ ½1� ðdXM=dtÞ2c�2��1=2 is the Lorentz fac-
tor of the mirror. We denote the incident wave number by k.
Transformations to dimensionless variables and to new
variables, 	, 
, which are the characteristics of the
Maxwell equation,

�x¼kx; �t¼kct; 	¼ð �x� �tÞ=2; 
¼ð �xþ �tÞ=2; (2)

XMðtÞ ¼ XMð
� 	Þ
k

; Aðx; tÞ ¼ mec
2

e
Að	; 
Þ; (3)

and the property �ðkzÞ ¼ k�1�ðzÞ yield the equation

@2A=@	@
 ¼ �A�½c ð	;
Þ�=�ð	; 
Þ; (4)

where � ¼ 2nelre�, � ¼ 2�=k, and

c ð	;
Þ ¼ 	þ 
� XMð
� 	Þ; (5)

�ð	; 
Þ ¼ ½1� X02
Mð
� 	Þ��1=2: (6)

We seek for the solution to Eq. (4) in the form of the
incident, transmitted, and reflected waves:

Að	; 
Þ ¼
�
a1ð	Þ þ a0e

2i
; c ð	;
Þ> 0;
a2ð
Þ; c ð	;
Þ � 0:

(7)

Here the factor e2i
 ¼ eikðxþctÞ represents the incident
wave. The solution should satisfy the boundary conditions
at the position of the mirror, c ð	;
Þ ¼ 0. We introduce
new functions 	0ð
Þ and 
0ð	Þ, for which c ð	0ð
Þ; 
Þ ¼
0 for any 
 and c ð	;
0ð	ÞÞ ¼ 0 for any 	, respectively.
The requirement that the solution is continuous,

Að	; 
0ð	Þ � 0Þ ¼ Að	;
0ð	Þ þ 0Þ, leads to the following
condition:

a1ð	Þ þ a0e
2i
0ð	Þ ¼ a2ð
0ð	ÞÞ: (8)

The remaining conditions can be obtained from Eqs. (4)
and (7). We integrate Eq. (4) over 
 in the vicinity of 
0ð	Þ
for fixed 	 and some small � > 0. Then we use the formulaR

0þ�

0�� �½c ð	;
Þ�fð	; 
Þd
 ¼ fð	;
0Þð@c =@
Þ�1 [the

derivative @c =@
 is taken at the point f	;
0ð	Þg].
Finally, in the limit � ! 0, we obtain the magnitude of
the jump discontinuity of the derivative A	 ¼ @A=@	 at


 ¼ 
0ð	Þ for fixed 	:

A	j
¼
0ð	Þþ0

¼
0ð	Þ�0 ¼ �FMð	;
0ð	ÞÞAð	;
0ð	ÞÞ; (9)

where we introduce the factor FM via equation

F 2
Mð	; 
Þ ¼ ½1þ X0

Mð
� 	Þ�=½1� X0
Mð
� 	Þ�: (10)

A similar expression is obtained for the magnitude of the
jump discontinuity of the derivative A
 ¼ @A=@
 at 	 ¼
	0ð
Þ for fixed 
. For the ansatz (7) these expressions give
the following two ordinary differential equations:

a01ð	Þ ¼ �ða1ð	Þ þ a0e
2i
0ð	ÞÞFMð	; 
0ð	ÞÞ; (11)

2ia0e
2i
 � a02ð
Þ ¼ �a2ð
Þ=FMð	0ð
Þ; 
Þ: (12)

The reflected, a1ð	Þ, and the transmitted, a2ð
Þ, waves are
determined by Eqs. (8), (11), and (12), which can be easily
reduced to quadratures.
In the simplest case of uniform motion, X0

Mð�tÞ ¼ � ¼
const, we have 
0ð	Þ ¼ �F2

M0	, FMð	;
Þ ¼ FM0 ¼
½ð1þ �Þ=ð1� �Þ�1=2 � 2�M. The solution to Eqs. (8),
(11), and (12) reads a1 ¼ ��a0 expð�2iF2

M0	Þ=ð�þ
2iFM0Þ, a2 ¼ 2iFM0a0 expð2i
Þ=ð�þ 2iFM0Þ, so that the
reflection coefficient in terms of the number of photons is
R ¼ ja1=a0j2 � ðnelre�Þ2=½ðnelre�Þ2 þ 4�2

M�; thus, we
recover the result of Ref. [5].
In the case of a mirror moving with a uniform accelera-

tion gkc2, for simplicity we consider the particular trajec-

tory XMð�tÞ¼g�1½1þðg�tÞ2�1=2. Then we obtain 
0ð	Þ¼
ð4g2	Þ�1, FMð	;
0ð	ÞÞ¼ð2g	Þ�1, FMð	0ð
Þ; 
Þ ¼ 2g
,
and the solution to Eqs. (8), (11), and (12):

a1ð	Þ ¼ �a0
2g

ð2ig2	Þ�=2g�
�
�

2g
; ð2ig2	Þ�1; 0

�
; (13)

a2ð
Þ ¼ �a0
2g

�
i

2


�
�=2g

�

�
�

2g
;
2


i
; 0

�
þ a0e

2i
; (14)

where �ða; z1; z2Þ ¼
R
z2
z1
ta�1e�tdt is the generalized in-

complete gamma function [13]. At 	 ! 0, a1ð	Þ ¼
� �a0

2g ð2ig2	Þ�=2g�ð �2gÞ þ i�a0g expð i
2g2	

Þð	þOð	2ÞÞ,
where � is the Euler gamma function [13]. The frequency
of the reflected radiation increases as 	�1, as in the case of
a perfect mirror of Ref. [14]. However, in our case the
mirror reflectivity decreases with time.
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We consider the case of a mirror oscillating with fre-
quency � (normalized on the incident wave frequency),

df�ð�tÞ½1� �2ð�tÞ��1=2g=d�t ¼ g cosð��tÞ; (15)

choosing the following trajectory of the mirror:

tanð�XMð�tÞÞ ¼ � cosð��tÞðh2 � cos2ð��tÞÞ�1=2; (16)

where h2 ¼ 1þ�2=g2. From c ð	; 
0ð	ÞÞ ¼ 0 we obtain


0ð	Þ ¼ � 1
� arctanðh tanð�	Þþ1

tanð�	Þþh Þ � �
� b�	þarctanh

� � 1
2e, where

the function bze gives the integer closest to z. The FM factor,
Eq. (10), for 
 ¼ 
0ð	Þ reads

F 2
Mð	;
0ð	ÞÞ ¼ h2 � 1

h2 þ 1þ 2h sinð2�	Þ : (17)

For Eq. (16) the only bounded solution to Eq. (11) is

a1ð	Þ ¼ �a0
g

Z þ1

�	

Eð�	Þ
Eð�Þ

e�ð2i�=�Þðh� ie2i�Þð2=�Þd�
ðh2 þ 1þ 2h sinð2�ÞÞð2þ�Þ=2� ;

E ð�Þ ¼ exp

�
�

gðhþ 1ÞF
�
�� �

4

��������
4h

ðhþ 1Þ2
��
: (19)

where FðzjmÞ is the elliptic integral of the first kind with an
asymptotic /z for z ! 1 [13].

In conclusion, a solid-density plasma slab, accelerated in
the radiation pressure dominant regime, efficiently reflects
a counterpropagating relativistically strong laser pulse.
The reflected EM radiation consists of the fundamen-
tal mode and high harmonics, all multiplied by the factor
�4�2, where the Lorentz factor of the plasma slab, �,
increases with time. In general, the reflected radiation is
chirped due to the mirror acceleration. With a sufficiently
short source pulse being sent with an appropriate delay to
the accelerating mirror, one can obtain a high-intensity
ultrashort x-ray pulse.

For the mirror velocity above some threshold, in the
mirror proper reference frame the average distance be-
tween electrons becomes greater than the incident wave-
length. The reflection is no longer coherent, i.e., such that
the reflected radiation power is proportional to the square
of the number of electrons in the mirror. Instead, the
reflected power becomes linearly proportional to the num-
ber of particles. Even with this scaling the interaction can
provide efficient generation of x-ray pulses via backward
(nonlinear) Thomson scattering due to a large number of
electrons in a solid-density plasma.

We estimate the reflected radiation brightness in two

limiting cases. For 2� < ðne�3
sÞ1=6, the reflection is coher-

ent and the brightness is BM � Esð@!Þ3�s=4�
5
@
4c3, where

@! is the reflected photon energy and Es is the source pulse
energy. For larger �, the interaction becomes incoherent in
the above mentioned sense. Assuming that the EM radia-
tion is generated via the Thomson scattering, we obtain
BT � adEsð@!Þ2re�2

s=8�
4
@
3c2�3

d. For example, if Es ¼
10 J, �s ¼ 0:8 �m, @! ¼ 1 keV (� ¼ 13), then BM ¼
0:8� 1040 photons=mm2 mrad2 s, which is orders of mag-

nitude greater than any existing or proposed laboratory
source [15]. For the same parameters of the source pulse
and �d ¼ 0:8 �m, ad ¼ 300, @! ¼ 10 keV (� ¼ 40), we
have BT ¼ 3� 1032 photons=mm2 mrad2 s.
With the concept of the accelerating double-sided mir-

ror, relatively compact and tunable extremely bright high-
power sources of ultrashort pulses of x- and �-rays become
realizable. This concept considerably expands the range of
applications, requiring a large photon number in an ultra-
short pulse, and will create new applications and research
fields, opening new horizons of laboratory astrophysics,
laser-driven nuclear physics, and studying the fundamental
sciences.
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