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Using the (1þ 1)D Majda-McLaughlin-Tabak model as an example, we present an extension of the

wave turbulence (WT) theory to systems with strong nonlinearities. We demonstrate that nonlinear wave

interactions renormalize the dynamics, leading to (i) a possible destruction of scaling structures in the bare

wave systems and a drastic deformation of the resonant manifold even at weak nonlinearities, and

(ii) creation of nonlinear resonance quartets in wave systems for which there would be no resonances as

predicted by the linear dispersion relation. Finally, we derive an effective WT kinetic equation and show

that our prediction of the renormalized Rayleigh-Jeans distribution is in excellent agreement with the

simulation of the full wave system in equilibrium.
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For many wave phenomena, due to their inherent com-
plexity and turbulent nature, statistical ensembles rather
than individual wave trajectories render the natural observ-
ables. In numerous branches of physics, including surface
waves, capillary waves, internal waves, waves on liquid
hydrogen, Alfvén and Langmuir waves in plasmas, and
turbulence in nonlinear optics, wave turbulence (WT) [1–
3] arises through interactions of weakly nonlinear resonant
waves in a dispersive medium. In contrast to strong turbu-
lence in incompressible fluids, the weak nonlinearity in
wave interactions potentially allows for a systematic treat-
ment of WT [3]. The resulting kinetic equation in WT
theory captures the time evolution of wave action [3]. In
addition to the equilibrium Rayleigh-Jeans (RJ) distribu-
tion, there are Zakharov-Kolmogorov stationary solutions
[3] to the kinetic equation for homogeneous, scale-
invariant wave systems, which capture the direct and in-
verse cascades of wave excitations. These were believed to
be universal (i.e., independent of the details of driving and
damping) nonequilibrium spectra in an inertial range
where neither driving nor damping exists.

Invoking random phase approximation (RPA), near
Gaussianity in wave statistics (so no coherent structures)
and resonant wave-wave interactions, WT theory was for-
mally developed for describing the long-time statistical
behavior of waves. Yet a major question remains, namely,
how well it can describe real wave systems. Many studies
attempted to verify the results of WT theory using direct
numerical simulations of the underlying wave equations,
but careful examination of the validity conditions of WT
theory is further needed, in particular, on questions of what
happens if any of the assumptions leading toWT theory are
violated. This requires careful analysis of the related wave
and (integro-differential) kinetic equations, with accu-
rate simulations for precise statistical convergence. For
ð1þ 1ÞD dispersive waves, this was carried out by intro-

ducing the MMT model [4], whose Hamiltonian in the
Fourier space is given by H ¼ H 2 þH 4,

H 2 ¼
Z

!kjakj2dk; (1)

H 4¼1

2

Z
T1234ak1ak2a

�
k3
a�k4�ðk1þk2�k3�k4Þdk1234;

with !k ¼ jkj�, T1234 ¼ jk1k2k3k4j�=4, parameters �> 0
and�, dk1234 ¼ dk1dk2dk3dk4 and �ð�Þ denoting the Dirac
delta function.
In this Letter, using the MMT model as a prototypical

example, we show how nonlinearity strongly modifies the
dynamics of resonance structure and discuss its consequen-
ces for the long-time dynamics of WT. Our study reveals
(i) the scaling-structures in the bare Hamiltonian (1) can be
destroyed and resonant manifolds are qualitatively modi-
fied by the renormalized dispersion relation, which is a
generalization of weak turbulence results [5] to strong
nonlinearities and (ii) nonlinear interactions can create
resonances in wave systems whose bare dynamics has no
resonance according to the linear dispersion relation.
Finally, we extend the WT theory to include renormalized
resonance dynamics.
The MMT model (1) is a prototypical example of a

homogeneous, scale-invariant system that allows for
four-wave resonances in one dimension in case of a con-
cave dispersion law, i.e., �< 1 (for which there are no
three-wave resonances). Its canonical equation of motion is

i
@ak
@t

¼ �H
�a�k

: (2)

If � ¼ 2 and � ¼ 0, it corresponds to the nonlinear
Schrödinger equation (NLS) while the case of � ¼ 1=2,
� ¼ 3 mimics the scalings present in water waves.
Numerical studies [4,6] of system (1) reveal self-similar,
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often coexistent, spectra, including one apparently incon-
sistent with WT theory, as well as coherent structures, such
as solitons, quasisolitons, and collapses, which greatly
complicate the WT picture of the MMT system. Studies
of this model thus show that, even in the weakly nonlinear
limit, WT theory may not be able to capture fully the rich
behavior of the nonlinear wave system [6,7].

Since the longtime statistical behavior of the nonlinear
system is often controlled by resonances, WT theory fo-
cuses on the resonant wave interactions [3] determined by
the linear dispersion relation !k ¼ !ðkÞ:

�k1k2
k3k4

� k1 þ k2 � k3 � k4 ¼ 0; (3a)

�!1!2
!3!4

� !k1 þ!k2 �!k3 �!k4 ¼ 0: (3b)

WT theory assumes that waves interact weakly, and thus,
in equilibrium, give rise to the RJ distribution—a station-
ary solution of the kinetic equation, independent of the
details of the nonlinearity [3]. However, nonlinear wave
interactions tend to renormalize dispersion relations [8],
which may have a strong impact on wave-wave interac-
tions and resonant structures. Using the MMT system as a
WT model, we investigate the consequences of dispersion
renormalization for resonant wave interactions in both
weakly and strongly nonlinear limits.

We first show that, in equilibrium, the Zwanzig-Mori
(ZM) theory [9] can successfully describe how the disper-
sion relation is renormalized for long waves. This theory
yields a generalized Langevin equation governing effective
dynamics of slow observables. For a single dynamical
variable akðtÞ, this exact Langevin equation is given by
@akðtÞ=@t ¼ �i�kakðtÞ �

R
t
0 Kðt� sÞakðsÞdsþ FkðtÞ,

where Fk is the random force related to the memory kernel
K by the fluctuation-dissipation theorem [9]. Using the
equipartition theorem � ¼ ha�k�H =�a�ki, where � is the

temperature of the MMT system, and h�i denotes the

average over the Gibbs measure e�H =�, we can show
that the effective dispersion relation is

�k ¼ �

hjakj2i
¼ jkj� þ jkj�=4

�
Z

jk1k2k3j�=4
hak1ak2a�k3a�ki

hjakj2i
�ð�k1k2

k3k
Þdk123: (4)

The ZM projection formalism usually results in a linear,
non-Markovian process. However, for a slow dynamical
variable such as a long-wave mode, Markovian behavior
results, and the renormalized dispersion relation �k char-
acterizes the temporal frequency of akðtÞ [10]. For short
waves, it is not clear that there is a time-scale separation
among the linear dispersion, memory kernel, and random
forcing; therefore, it would be difficult to interpret �k as
the oscillation frequency of ak for high k’s. However, it will
be seen below that, surprisingly, �k accurately describes
the oscillations of ak for all k’s.

The renormalized ZM dispersion (4) further reduces to

~� k � jkj� þ
�
2
Z

jk0j�=2hjak0 j2idk0
�
jkj�=2 (5)

by RPA. Via ~�k0 ¼: �=hjak0 j2i, Eq. (5) becomes ~�k ¼
jkj� þ �ð2R jk0j�=2 ~��1

k0 dk
0Þjkj�=2, from which ~�k and �

can be determined after invoking the conservation of wave

action,
R jak0 j2dk0 � N , i.e.,

R
�= ~�k0dk

0 ¼ hN i, where
N is set by the initial condition. The connection be-
tween this renormalized dispersion and wave interactions
can be seen by considering the collective effect of the
trivial resonances, i.e., k1¼k3 or k1¼k4 in conditions
(3). More precisely, the trivial resonant terms in H 4,

H tr
4 � 2

R jk0j�=2jkj�=2jak0 j2jakj2dk0dk, can be approxi-

mated by H eff
q ¼ R½ð2R jk0j�=2hjak0 j2idk0Þjkj�=2�jakj2dk

via a mean-field argument that each ak interacts effect-
ively with the thermal background waves hjak0 j2i.
The combination of H eff

q and H 2 yields an effec-

tive quadratic interaction H eff
2 � R½jkj� þ

ð2R jk0j�=2hjak0 j2idk0Þjkj�=2�jakj2dk. Hence, the dispersion
relation (5). Therefore, the longtime dynamics can be
described by an effective Hamiltonian H eff ¼
H eff

2 þH 4 �H tr
4 , with H 4 �H tr

4 representing the
nonlinear interactions. This dispersion renormalization,
arising from trivial resonant interactions, effectively weak-
ens the averaged nonlinear interactions. Note that Eq. (5),
which is not limited to weak nonlinearities, is a nonpertur-
bative generalization of the perturbatively corrected dis-
persion relation for weak nonlinearities [5,11].
We now turn to the examination of our predictions (4)

and (5). We numerically solve Eq. (2) [12,14] to obtain the
spatiotemporal spectrum jâkð!Þj2 in equilibrium, where
âkð!Þ is the Fourier transform of akðtÞ. The peak locations,
!meas

k , of jâkð!Þj2 can be viewed as the effective oscillation
frequency of akðtÞ. Figure 1 displays the result for� ¼ 1=2
and� ¼ 6, the inset for� ¼ 2 and� ¼ 0 (NLS) where the
correction to!k is an additive constant. In general, we find
that, among the three dispersion relations, the ZM disper-
sion relation �k agrees best with the measured !meas

k . We
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FIG. 1 (color online). Measured !meas
k , the bare !k ¼ jkj�,

Eq. (4) and (5) with � ¼ 1=2, � ¼ 6, are depicted as solid,
dotted, dashed, and dashed-dotted lines, respectively. N ¼ 1024.
Inset: The same for NLS (� ¼ 2, � ¼ 0).
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stress that the RPA in ~�k (5) is appealing in that it not only
agrees well with numerical results, but also gives a clear,
intuitive physical mechanism for the renormalization. It is
important to point out that, unlike the Fermi-Pasta-Ulam
chains [8], the renormalized wave frequency of the MMT
system, in general, is not a simple rescaling of the bare
!k ¼ jkj�. The case in Fig. 1 is characterized by the geo-

metric shift from the overall concavity of the bare !k ¼
jkj1=2 to the convexity of the renormalized curves at high
k’s. This qualitative change of the dispersion relation takes
place whenever �< 1 and�=2> 1, as seen in Eqs. (4) and
(5), which generalizes, to strong nonlinearity, the corre-
sponding results at weak nonlinearity [5]. It is important to

note that the renormalization correction isOðjkj�=2Þ, which
can always dominate over the bare dispersion relation
!k ¼ jkj� for large k’s if �=2>�, no matter how small
the nonlinearity. Furthermore, except for � ¼ 2�, the
scaling structures in the bare dynamics (1) are destroyed
by renormalization even at weak nonlinearities, thus, giv-
ing rise to a new resonance manifold not determined by the
original scaling symmetry, as discussed below.

The theoretic resonance structure (3) can be visualized
by projecting

j�!1!2
!3!4

j ¼ j!k1 þ!k2 �!k3 �!k4 j (6)

on (k1, k2) with k3 being fixed and k4 from (3a). Fig-
ures 2(a)–2(c) display surface plots of (6) for the bare
!k ¼ jkj�, and the renormalized!k ¼ �k (note that using
~�k gives similar results) for � ¼ 4 [Fig. 2(b)] and � ¼ 8
[Fig. 2(c)], respectively. In these figures, the resonance
manifold determined by j�!1!2

!3!4
j ffi 0, as signified by the

dark strips, undergoes a deformation as � increases and the
resonance structures determined by the renormalized �k

are clearly different from those by the bare!k. To approxi-
mate the MMT model, we use N Fourier modes, and move
all to the first Brillouin zone. The resonances within the
area in Fig. 2(a) bounded by the two dashed lines are
system intrinsic, i.e., not caused by the periodicity of the
finite system.

In the traditional WT theory, waves interact through
resonances controlled by the bare !k. Here, we demon-
strate a different picture. Since the resonances control the

contribution of terms such as ak1ak2a
�
k3
a�k4�ð�

k1k2
k3k4

Þ in the

longtime limit, we use the longtime average

A k1k2
k3k4

� hak1ak2a�k3a�k4 ~�ð�
k1k2
k3k4

Þi
to reveal the resonance structures manifested in the dy-

namics (1). Here ~� equals 1 if�k1k2
k3k4

is a multiple ofN and 0

otherwise. This ~�, instead of the Dirac �, is used to account
for the discrete approximation of Eq. (2). For � ¼ 8,

jAk1k2
k3k4

j is displayed in Fig. 2(f), whose comparison with

Fig. 2(c) reveals an excellent agreement between the loca-
tions of the peaks (dark strips) of the longtime average and
the loci of the resonances (6) determined by the renormal-

ized �R
k � �k or ~�k (The WT theory would predict the

resonance structures as in Fig. 2(a) for these cases). The
physical picture derived from these results is that wave
resonances are renormalized and they are governed by the
renormalized �R

k . We note in passing that �R
k ¼ jkj� þ

const for NLS; therefore, its renormalized resonance struc-
tures should be the same as those predicted by WT theory,
as is confirmed in our study.
We stress that both the nonlinearity parameter � and the

linear frequency exponent � play important roles in�R
k . In

particular, if �> 1 (for which there is no nontrivial four-
wave resonances by !k ¼ jkj�), resonances controlled by
�R

k may arise if 0<�=2< 1. Shown in Fig. 2(e) is such a
result where new resonance structures for � ¼ 2, � ¼ 1,
are created. For comparison, the resonance structure (6) for
!k ¼ jkj2 is displayed in Fig. 2(d) which does not possess
new resonant strips appearing in Fig. 2(e). This result
shows that the nonlinearity renormalizes the linear disper-
sion relation to modify the resonance manifold, thereby
creating new resonant interactions even when there would
be no bare resonance as dictated by the linear dispersion
relation. We note that there is a surprising similarity in the
resonance structure between Figs. 2(b) and 2(e). This simi-
larity arises because both �R

k have the asymptotic form of

c1jkj1=2 þ c2jkj2. The resonance structure of Fig. 2(b) is in
a weak turbulence regime while Fig. 2(d) is in a strong
nonlinear regime with H 4=H 2 � 1.
The classical kinetic equation of WT theory [3] cannot

be used to find the spectra with strong nonlinearities. Here,

k
1

k 2

(a) α=1/2

−200 0 200

−200

0

200

0

1

(d) α=2

k
1

k 2

−200 0 200

−200

0

200

(b) α=1/2,β=4

k
1

k 2

−200 0 200

−200

0

200

k
1

k 2

(e) α=2,β=1

−200 0 200

−200

0

200

0

1

(c) α=1/2,β=8

k
1

k 2

−200 0 200

−200

0

200

(f) α=1/2,β=8

k
1

k 2

−200 0 200

−200

0

200

FIG. 2 (color online). The plot of the value of Eq. (6) using
bare !k ¼ jkj� (a),(d) or renormalized !k ¼ �R

k (b),(c) vs

jAk1k2
k3k4

j (e),(f). In all cases k3 ¼ 128 is used. k is in the unit

of �=N, N ¼ 512.
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we develop a WT-like theory for this regime based on the
frequency renormalization derived above. Approximating
hjakðtÞj2i by nkðtÞ � hjakðtÞj2ieff , averaged over the Gibbs
measure with the effective Hamiltonian H eff ¼ H eff

2 þ
H 4 �H tr

4 , we can derive the following effective kinetic
equation for nkðtÞ:

@nkðtÞ
@t

¼ 4�
Z

~T123kU123k�ð�~�1
~�2

~�3
~�k
Þ�ð�k1k2

k3k
Þdk123; (7)

where U123k ¼ n1n2n3nkðn�1
k þ n�1

3 � n�1
2 � n�1

1 Þ and

the interaction tensor ~T123k ¼ T123k if k1 � k2 and k3 �

k, and 0 otherwise. We immediately find nk ¼ �= ~�k as a
stationary solution to Eq. (7), since it makes the integrand
vanish. This renormalizedRJ distribution is consistent with
the ZM prediction [Eq. (4)], but deviates from the classical
RJ distribution hjakj2i ¼ �=jkj� as predicted byWT theory
using the bare Hamiltonian H , especially for high k and
strong nonlinearity. As a verification of the validity of the
effective kinetic equation (7), Fig. 3 shows that hjakj2i
obtained numerically using time average from the original
dynamics (2) in equilibrium agrees very well with the

prediction nk ¼ �= ~�k.
The Kolmogorov-Zakharov nonequilibrium spectra [3]

do not satisfy Eq. (7), since ~�k no longer has a simple
power law scaling as in the bare !k ¼ jkj�. For a driven-
damped MMT system [13], our simulation reveals a bifur-
cation of the renormalized dispersion relation. In the
weakly driven, damped system, the wave system is similar
to the thermal equilibrium case, i.e., nk � 1=�R

k in the

inertial range with the renormalized !k ¼ �R
k . For strong

driving and damping, however, a new dispersion relation
!k � jkj� with �� 0:55 is observed for � ¼ 1=2.
Furthermore, our numerical analysis shows that even in

the driven, damped system, jAk1k2
k3k4

j matches well with the

four-wave resonance structure (6) by its corresponding
renormalized dispersion relation.

In conclusion, a new dynamical picture of WT emerges:
The linear dispersion relation is effectively renormalized,
allowing one to treat systems with strong nonlinearities.

This renormalization can create new resonances that are
not present in the bare resonances, giving rise to WT
dynamics which cannot be captured by the classical WT
theory. Going beyond the classical perturbative perspec-
tive of WT, our work has revealed a nonperturbative nature
of WT with the spectrum nk of WT dynamics determined
by an intertwining self-consistent process: The trivial reso-
nant scatterings of waves off of background waves char-
acterized by nk control the true, renormalized, dispersion
relation. This renormalized dispersion relation, in turn,
controls nontrivial resonances of the full dynamics, thus
giving rise to a self-consistent wave spectrum nk.
This work was supported by an NSF grant.
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FIG. 3 (color online). Wave spectrum �= ~�k (dashed) vs the
WT prediction �=jkj� (solid straight) with � ¼ 1=2, � ¼ 6.
Solid curve is measured nk ¼ hjakj2i. N ¼ 1024.
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