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We show that a laser beam which propagates through an optical medium with Kerr (focusing) and

higher order (defocusing) nonlinearities displays pressure and surface-tension properties yielding capil-

larity and dripping effects totally analogous to usual liquid droplets. The system is reinterpreted in terms

of a thermodynamic grand potential, allowing for the computation of the pressure and surface tension

beyond the usual hydrodynamical approach based on Madelung transformation and the analogy with the

Euler equation. We then show both analytically and numerically that the stationary soliton states of such a

light system satisfy the Young-Laplace equation and that the dynamical evolution through a capillary is

described by the same law that governs the growth of droplets in an ordinary liquid system.
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Introduction.—Since the pioneering paper of Piekara in
the 1970s [1], many works have highlighted the interesting
properties of laser beams whose propagation is described
by the so-called cubic-quintic (CQ) nonlinear Schrödinger
equation (NLSE) with competing nonlinearities. Cavita-
tion, superfluidity, and coalescence have been investigated
[2,3] in the context of liquid He, where the model is a
simple approach which does not take into account nonlocal
interactions. Stable optical vortex solitons and the exis-
tence of top-flat states have also been reported in materials
with CQ optical susceptibility [4]. Recent experiments
about filamentation of high-power laser pulses have shown
that the CQ regime could be achievable in CS2 [5] as well
as in some chalcogenide glasses [6]. Theoretical calcula-
tions suggest that atomic coherence may be used to induce
a giant CQ-like refractive index in a Rb gas [7].

On the other hand, this model has been shown to display
surface properties in numerical simulations of soliton col-
lisions [8] that have been considered as a trace of a liquid
state of light [7,9]. Here, we will provide the first analyti-
cal, quantitative demonstration of the liquid behavior of the
system in 2þ 1 dimensions, both in its stationary soliton
solutions and in the dynamical evolution when a light
bump is forced to pass through a waveguide simulating a
capillary. In particular, we will provide the first consistent
computation of the pressure and surface tension of self-
trapped light beams in 2þ 1 dimensions, and show both
analytically and numerically that they satisfy the Young-
Laplace (YL) equation that gives the equilibrium of usual
droplets. Subsequently, we will demonstrate that the sys-
tem dripping properties are governed by the same gener-
alized YL that applies to an ordinary liquid. These results
show the deep connection between the nonlinear dynamics
of laser beams and coherent liquids at zero temperature
[10].

Thermodynamic model.—We will consider the paraxial
propagation through an ideal CQ medium of a linearly
polarized laser beam, whose complex amplitude distribu-

tion � is described by the nonlinear Schrödinger equation
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where z is the propagation distance multiplied by 2�=�
and � is the wavelength of the continuous light beam, r2

?
is the transverse Laplace operator in terms of x; y, the
spatial variables multiplied by 2�
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the linear refractive index of the medium, � and � are

proportional to the (opposite) �ð3Þ and �ð5Þ optical suscep-
tibilities, respectively.
It is well known that the stationary version of Eq. (1)

admits localized solitonlike solutions [1] of the form
�Aðx; y; zÞ ¼ Aðx; yÞe�i�z, where � is the propagation
constant. In particular, it has been shown numerically
that high-power solitons feature top-flat profiles [4].
These modes can only be calculated numerically and coex-
ist with plane waves solutions of constant amplitude
�Aðx; y; zÞ ¼ Ae�i�z, which lead by substitution in
Eq. (1) to � ¼ �jAj4 � �jAj2. The existence domain for

solitons is � 2 ð�1; 0Þ, where �1 ¼ � 3�2

16� .

As discussed in [11], the stationary solutions of Eq. (1)

can be derived from a variational principle ��
�c � ¼ 0 from

Landau’s grand potential � ¼ H ��N, where H is the
Hamiltonian, N ¼ R j�j2dS the particle number (in our
system the photon flux through the transverse section S),
and � the chemical potential. In fact, the identification of
the latter with the propagation constant that we have de-
fined above ensures that � coincides (up to a sign choice)
with the Lagrangian, yielding
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1
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In three-dimensional systems, the partial derivative of�
with respect to the volume at constant chemical potential
and temperature would give minus the pressure p. For our
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2D model at zero temperature, it is then natural to use the
derivative with respect to the area S,

p ¼ �ð@�=@SÞ�
¼ � 1

2
jr?�j2 þ �

2
j�j4 � �

3
j�j6 þ�j�j2: (3)

In Fig. 1 we plot an example of a ‘‘flattop’’ stationary
state, corresponding to �=�1 ¼ 0:98, together with its
pressure distribution. For all this type of solutions, in the
wide flat region the value of the pressure is positive and
equal to the central value pð0Þ � pc. This behavior con-
trasts with that for the low amplitude, quasi-Gaussian
solitons, whose pressure distribution does not display a
top-flat central region. On the other hand, the beam ampli-
tude of the top-flat solitons close to the origin can be
straightforwardly obtained as

jAð0; 0Þj2 ¼ �

2�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4��

p
2�

; (4)

which yields for the pressure at the center of the beam (pc)
the following analytical expression:

pc ¼ ð�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4��

p Þ2ð��þ 2
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24�2

: (5)

Notice that pc vanishes at the limits of the existence
domain: � ¼ 0 (trivial zero-amplitude solution) and � ¼
�1 (infinite flattop with jA1j2 ¼ 0:75�=�).

Limitations of the hydrodynamical analogy.—Our
present purpose is to use the previous formalism in order
to study the physical properties of the system. First, let us
try to apply the commonly used hydrodynamical analogy,
based on introducing the so-called Madelung transforma-

tion [12] c ¼ �1=2ei�, where � is a positive definite real
function and� is a real phase, eventually depending on the
variables x, y, and z. After substituting in Eq. (1), and

separating both the real and the imaginary part, we get two
equations. The first one is a continuity equation, that is
used to establish an analogy with hydrodynamics and to
identify r� with a current, i.e., a velocity field v. The
second equation is
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Here, the usual approach [2] is to assume that the term
1

2�1=2 r2
?�

1=2 can be neglected. In this case, Eq. (6) is

identical to the known Euler equation of hydrodynamics

provided that r?ð��� ��2Þ ¼ �r?p
� . This formula was

used, e.g., in Ref. [2] in order to derive an expression for
the pressure of the homogenous phase, which coincides
with our result of Eq. (5) for the top-flat region of the
solitons. One could hope that this analogy could be gener-
alized also to the nonhomogenous zones, such as that
corresponding to values of the radial coordinate r around
the radius R of the beam. However, we will see that this is
not the case. For a (nonrotational) top-flat soliton the phase
term is simply equal to � ¼ ��z, therefore v ¼ r?� ¼
0. Note that � is the propagation constant which is just a
constant number for the given soliton. Therefore, by sub-
stituting in Eq. (6), we get

r?
�

1

2�1=2
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?�
1=2 þ ��� ��2

�
¼ 0: (7)

In other words, in this case the term that is usually
neglected is exactly equal and opposite to the part that is
used to compute the pressure. Therefore, neglecting such a
term would correspond to a 100% error. In fact, for any
soliton solution, having v ¼ 0, Euler equation would un-
avoidably imply a constant pressure, which cannot be the
case in any region where the spatial variation of the density
is important. Nevertheless, in spite of this failure of the
ordinary hydrodynamical approach, we will see that the
‘‘pressure’’ distribution in the nonhomogeneous region can
still be given a deep physical interpretation.
Equilibrium and surface tension.—Figure 1 suggests

that the � potential, as given by the spatial integral of
�p, can be written as the sum of two contributions: one
from the top-flat region, which is ��R2pc with a good
accuracy, and another from the region near the border,
where the field is spatially dependent, which is
�2�

R1
R rpðrÞdr. Thus, we get the following analytical

approximation for the � potential of the flattop solutions:

� ’ ��R2pc þ 2�	R; (8)

where we have defined a parameter 	 � � 1
R

R1
R rpðrÞdr.

We will now argue on how 	 can be identified with the
surface tension of the light beam. In the first place, we have
computed numerically the parameter 	 for the different
high-power top-flat solitons, and we have found that it
converges quickly to a fixed value 	 ’ 0:057 as soon as

FIG. 1. Plot of radius versus propagation constant for different
localized stationary solutions of Eq. (1). Solid (dashed) line
corresponds to numerical (analytical) calculations. The left
(right) inner picture shows the field modulus profile (pressure
distribution) of a stationary beam with �=�1 ¼ 0:98. Notice
that close to the origin the homogeneous pressure is positive,
whereas in the inhomogeneous region it becomes negative.
Beam radius is represented in adimensional units.
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j�j approaches the limiting value �1. In such a limit, the
central pressure goes to zero and the only important con-
tribution to the integral defining 	 comes from the gradient
term of Eq. (3). Thus 	 ’ � 1

2R

R1
R rjr?�j2dr.

We can then get an analytical approximation for 	
by noting that for large R and r, r?� ’ d�=dr, and
the multiplicating r in the integrand can be approximated
by R in the comparatively thin ‘‘surface’’ region. Taking
into account that for large r Eq. (1) yields A0ðrÞ2 ’
��AðrÞ4=2þ �AðrÞ6=3þ�AðrÞ2, and substituting the

limiting value � ! �1 ¼ � 3�2

16� , we get

	 ’ 9�2

64
ffiffiffi
6

p
�3=2

: (9)

For instance, the choice � ¼ � ¼ 1 gives 	 ¼ 0:057, in
complete agreement with our numerical value. From
Eq. (8), taking into account that 	 is constant, we get

d�

dR
’ ��

�
dðR2pcÞ

dR
� 2	

�
: (10)

Our numerical calculations show that the growth in R holds

the thermodynamical equilibrium (i.e., d�
dR ’ 0), within a

relative error which turns out to be as small as d�
dR < 10�4 �

R

for all the range of flattop eigenmodes considered.

Therefore, we can set d�
dR ¼ 0 in Eq. (10), and we get

dðR2pcÞ
dR ¼ 2	, or

pc ¼ 2
	

R
; (11)

which is the celebrated Young-Laplace equation [13] for
spherical liquid droplets being 	 the surface tension of the
system. Therefore, despite the failure of the usual hydro-
dynamic approach, we have demonstrated that the pressure
distribution in the inhomogeneous region has a deep physi-
cal interpretation. In fact, the integral of the pressure in the
nonhomogeneous surface region gives the surface tension
(	), i.e., the inward force that compensates the outward
positive inner force described by the pressure pc, in order
to keep the droplet stationary.

Instead of directly comparing Eq. (11) with the numeri-
cal simulation, we will equivalently test the inverted equa-
tion R ¼ 2	=pc, where pc can be expressed analytically in
terms of either the central amplitude A or of the propaga-
tion constant �, by using Eqs. (5) and (9). This result
provides the first analytical expression for the radius R of
the bidimensional top-flat solitons as a function, e.g., of�,
and is compared with the numerical solutions of the sta-
tionary version of Eq. (1) in Fig. 1. As it can be appreciated
in the figure, the agreement between the analytical formula
and the numerical computation is remarkable, and be-
comes complete when j�j approaches j�1j. This result
confirms our theoretical framework and provides the first
formal demonstration, by validation of the YL equation, of
the liquid properties of the flattop solutions in the (2þ 1)-

dimensional CQ model. Moreover, from Eq. (11) it can be
inferred that, as R ! 1, the value of pc vanishes, indicat-
ing that surface-tension effects are not needed to balance
the inner pressure, as it is the case of standard liquids
described by the YL equation.
Dripping of light droplets.—In classical fluid mechanics,

the presence of surface-tension effects can be appreciated
in the dynamical phenomenon of capillarity [13,14]. Here,
in order to study droplets formation and dripping in our
system, we have introduced in Eq. (1) an external
‘‘channel-type’’ linear optical waveguide Vðx; yÞ, super-
posed to the CQ nonlinearity. This waveguiding structure
consists of three regions with indices n1 ¼ 0:002 (top),
n2 ¼ 0:0028 [channel filled up in dark (brown) and bottom
zone], and n3 ¼ 0:001 (rectangular zones flanking the
channel), as can be seen in Fig. 2(a). In our simulations,
we compare the evolution of two initial eigenstate beams
with propagation constants�=�1 ¼ 0:01 [quasi-Gaussian
beam of Fig. 2(a)] and �=�1 ¼ 0:98 [flattop beam of
Fig. 2(d)], both located within the waveguide top region.
Depending on the channel size, and keeping n3 < n2; n1,
above a given value of �n ¼ n2 � n1 in both cases a
significant amount of beam power starts to flow from
the initial eigenstate through the channel, as shown in
Figs. 2(b) and 2(e). It is noteworthy that the light stream
inside the channel does not suffer any destabilization and
remains connected to the initial source of light; i.e., the
guide prevents the appearance of modulational instability.
At the output of the channel, it can be seen in Fig. 2(c) that
the low-power distribution spreads like a (coherent) gas in
free expansion. This lack of liquidlike behavior corre-
sponds to the fact that these solutions do not obey the

1n

n3

n2

b) c)

e) f)

a)

d)

FIG. 2 (color online). Simulation of the modulus evolution of
two different types of beams. The upper row shows a Gaussian
profile with low power, corresponding to a ‘‘photonic gas,’’
whereas the lower row displays the propagation of a high-power
flattop state yielding to liquidlike behavior (dripping). The size
of all pictures is x; y 2 ½�250; 250� in adimensional units. The
propagation distances in (a)–(d), (b)–(e), (f), and (c) are respec-
tively z ¼ 0; 11 000; 27 000; 45 000. The refractive index struc-
ture indicated in (a) is the same in all snapshots.
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YL equation. However, the light flowing from the flattop
beam yields to the formation of a droplet, as can be
appreciated in Fig. 2(f) and in the insets of Fig. 3.

As it can be observed in the insets of Fig. 3, before the
release of the droplet, the end of the light stream becomes
narrower as in the case of usual liquids falling from a tap
[15]. In fact, all the steps in Fig. 2 are qualitatively very
similar to those obtained both in real experiments and in
simulations with liquids [14–17].

Finally, we have also performed a quantitative test by
comparing the numerical simulation with the generalized
YL equation that describes the growth of an elliptic bubble
of an ordinary liquid system, pc ¼ 	ð 1RI

þ 1
RII
Þ, where RI

and RII are the principal radii [13]. In Fig. 3, we have
plotted the quantity 	 ¼ pc=ð 1RI

þ 1
RII
Þ for the ‘‘dripping’’

simulation of Fig. 2 at several propagation distances, as-
suming z ¼ 0 where the light droplet first appears. We see
that the numerical value of 	 oscillates around the same
value that we have calculated analytically in Eq. (9) for the
stationary solutions. This demonstrates that the droplets
are formed close to stationary equilibrium, and they grow
according to the generalized YL equation as in the case of
an ordinary liquid.

Conclusions.—We have provided the first consistent
computation of the pressure distribution and surface ten-
sion of solitons appearing in the propagation of self-
trapped laser beams described by the (2þ 1)-dimensional
CQ NLSE, and we have shown both analytically and
numerically that they satisfy the Young-Laplace equation
that governs the equilibrium of usual liquid droplets.
Subsequently, we have also demonstrated that the system
dripping properties are governed by the same generalized

YL that applies to an ordinary liquid. As far as we know,
this is the first explicit example of a coherent fluid showing
capillarity.
Our general approach also applies to other physical

systems like atomic Bose-Einstein condensates. In particu-
lar, our new analysis on the limitations of the universally
used Madelung hydrodynamical approach can also be
applied to many different nonlinear systems modeled by
NLS-type equations. These results open the door to the
demonstration of a new type of phase transitions at zero
temperature, which are not ruled by quantum fluctuations
but induced from purely nonlinear effects, and to the
realization of experiments not only in nonlinear optics
but also in the field of quantum fluids.
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FIG. 3 (color online). Numerically calculated values of the
surface tension along the droplet-formation process. Solid
(dashed) line corresponds to numerical (analytical) calculations
of 	. Insets: Snapshots showing different stages of evolution of
the light droplet for different values of z. Circles in the figure
refer to upper insets. The spatial scales spanned are x 2
½�50; 50�, y 2 ½�20;�80�. 	 is represented in adimensional
units.
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