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Two-photon emission from semiconductors was recently observed, but not fully interpreted. We

develop a dressed-state model incorporating intraband scattering-related level broadening, yielding

nondivergent emission rates. The spectrum calculations for high carrier concentrations including the

time dependence of the screening buildup correspond well to our measured two-photon emission spectrum

from GaAs.
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Two-photon emission (TPE) is a single electron transi-
tion accompanied by the emission of a photon pair. A
possible second-order perturbation calculation of such
TPE spectra requires summation over all system states,
which span the virtual state. The energy of each individual
photon of the pair is not determined, while the pair as a
whole conserves the transition energy. The spectrum of
TPE is therefore very broad and continuous [1]. TPE is of
great importance for applications in astrophysics, contrib-
uting to the continuum radiation from planetary nebulae
[1,2], and atomic physics due to the emitted spectrum
dependence on the entire quantum level structure of the
system [3]. TPE in condensed matter and specifically in
semiconductors was only recently observed, exhibiting
emission rates nearly 5 orders of magnitude weaker than
one-photon processes and nonradiative transitions [4]. This
phenomenon opens a wide range of possible applications
including efficient electrically driven heralded single pho-
ton sources and entanglement sources [5,6]. Moreover, it is
a crucial effect for future semiconductor two-photon am-
plifiers [7–9] and lasers [10] allowing ultrashort optical
pulse generation due to the nonlinearity and the wide
bandwidth of two-photon gain. The opposite process of
semiconductor two-photon absorption (TPA) has been sub-
stantially investigated [11,12] and employed recently also
in coherent-control applications [13–15]. In all TPA cal-
culations, even in the nondegenerate case (two photons
with different energies), the photon energies were consid-
ered to be near half the one-photon transition energy
[16,17]. However, in spontaneous TPE and in ultrashort
pulse stimulated TPE, very wideband continuum of photon
energies must be included in the calculations.

In contrast to the discrete-level atomic systems, in semi-
conductors the energy levels comprise continuous bands
corresponding to delocalized solid-state electron wave
functions with definite crystal momentum, for which parity
is not a good quantum number. Thus, the initial and final
states of the electron transition should be included in a
possible perturbative span of the intermediate state, as is
shown in Fig. 1(a)—a situation which does not occur in
discrete-level systems due to parity selection rules. This
unique situation results in the initial and final states having

the largest contribution to the transition rates as intermedi-
ate states due to the small denominator of the matrix
elements, where the electron initial-intermediate (or
intermediate-final) state energy difference is close to zero

FIG. 1. Transitions diagrams (a) semiconductor TPE transi-
tion—the solid arrows indicate the actual transitions via virtual
states, while the dash-dotted arrows indicate the contributions of
the CB and VB intermediate states to the calculation. (b) A
Feynman diagram of a second-order TPE with the crystal elec-
tron state described as an interaction with the static crystal
potential, depicted by a straight line, while the photons are
represented by wavy lines (c) Dressed-state first-order TPE.
The dressed crystal electron state is represented by a zigzag line.
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[11]. Therefore, in TPE spectral calculations at vanishing
photon energies these intermediate states result in infrared
catastrophes causing spectrum distortions [4]. Related di-
vergences, occurring in nearly cascaded atomic TPE with
resonant intermediate states, were mitigated by the inclu-
sion of a lifetime-related level broadening [1] which can be
rigorously included by a proper derivation of the Fermi
golden rule [18,19]. In solid-state physics the electron-
photon interaction is usually not the strongest one, and
various intraband carrier scattering mechanisms which
determine the dephasing and the corresponding level
broadening are included into the perturbative calculations
rigorously via the imaginary self-energy approach [20].

We develop a nonperturbative approach to analyze the
process of TPE in semiconductors. Furthermore, we vali-
date experimentally that the corresponding spectrum in
GaAs at room temperature does not exhibit any (physically
originated) divergence-related distortions due to the zero-
frequency resonance. The theoretical model is based on the
solid-state dressed electron formalism, where the resulting
matrix elements include energy broadening caused by
scattering-related dephasing.

In a solid-state system with negligible intraband scatter-
ing, the calculated spectrum would be strongly distorted,
and the calculated two-photon emission rate could exceed
the one-photon emission rate, indicating a modeling prob-
lem. However, in most practical solid-state systems various
scattering mechanisms induce significant level broadening,
and spectrum calculations including the scattering-related
level broadening yield correct physical results.

An elegant technique to avoid some of the unphysical
divergences in quantum-field theory was proposed by
Welton by treating the vacuum field fluctuations semiclas-
sically to interpret phenomena such as the Lamb shift [21].
Our TPE model is based on a related approach, where one
field dresses the electronic states while the spontaneous
emission from the virtual state is given by a complete
quantum-field description. Such a dressed-state method is
useful in interpreting various other natural phenomena,
such as optical nonlinearities [22] and tunneling [23].

In the standard second-order perturbation formalism, the
transition amplitude [Fig. 1(b)] of the electrons from the
conduction band (CB) to the valence band (VB) for speci-

fied crystal momenta ~kv; ~kc is given by
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with the interaction Hamiltonian Hint ¼ �e=m0ð ~̂A � ~̂pÞ,
where ~̂p is the momentum operator, e the electron charge,

m0 the free-space electron mass, and ~̂A the vector potential
operator for a lossless dielectric in the Coulomb gauge.

c i ¼ jucei ~kc ~rij01; 02i and c f ¼ juvei ~kv ~rij11; 12i are the

initial and the final electron-radiation system states.
uv; uc are the Bloch functions of the semiconductor in
the VB and the CB, respectively. The calculation is per-
formed by summation over all possible intermediate states
c n of the system; however, in the case of semiconductors
only four intermediate states will be significant to the rate
calculation with electron at the initial or the final state
[Fig. 1(a)].

c n1 ¼ jucei ~kc ~rij11; 02i; c n2 ¼ jucei ~kc ~rij01; 12i;
c n3 ¼ juvei ~kv ~rij11; 02i; c n4 ¼ juvei ~kv ~rij01; 12i:

(2)

Only one VB is considered here for simplicity, which is,
however, sufficient to indicate the divergence problem. The
spectral density of TPE in bulk semiconductor per unit

frequency is W=@!1 ¼
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is a crystal volume, and the unitless matrix element M is
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with f2ðj ~kjÞ and ð1� f1ðj ~kjÞÞ the population functions for
CB and VB given by Fermi-Dirac distribution, mr is the
reduced mass, pcv is the bulk material momentum matrix
element, E21 is electron-hole energy separation.
The TPE rate calculated without any level broadening

diverges linearly ( / 1=!) at low frequencies resulting in
an infrared catastrophe [Eq. (3)], which may be avoided by
incorporating level broadening through a complex-energy
dephasing term [20]. In atomic discrete-level systems the
dephasing can be simply attributed to the energy level
lifetime [1]; however, for solid-state energy bands, a
much richer variety of level-broadening intraband scatter-
ing mechanisms should be considered. In semiconductors,
level broadening was calculated by the imaginary self-
energy approach for phonon scattering [24] and for
carrier-carrier scattering [25]. The dominant dephasing
process is generally determined by the carrier density and
temperature [26], and for high carrier concentrations re-
quired for significant TPE, carrier-carrier scattering is the
most important process where the interaction strength is
affected by the carrier density dependent screening [20].
We employ a dressed-state approach, where one of the

interacting fields dresses the initial and final electronic
states of the semiconductor—represented as Volkov states.
This approach was successfully employed for description
of multiphoton absorption in solids [17]; however, for
emission processes this method has not been applied be-
fore. Moreover, the dressed-state approach is applicable in
strong interaction scenarios such as spontaneous emission
strongly coupled to a cavity and ultrafast pulse stimulated
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emission, while in the weak-field limit the dressed-state
calculation approaches the results of perturbative methods.

Volkov states �ð~r; tÞ are the exact solutions of the time-
dependent Schrödinger equation for a single particle in an
electromagnetic field, derived by applying a unitary trans-

formation � ¼ expf�R
t
0
e
m
~Að�Þd� � ~rg to the solution of

the time-independent equation without external fields,
where m and e are the particle’s mass and charge. These
states may be interpreted as plane waves in an oscillating
frame, since� represents a translation operator. The above
derivations are correct in dipole approximation and ne-
glecting the Stark effect. Volkov states [27] are therefore

given by �ð ~r; tÞ ¼ uð ~k; ~rÞei ~kð ~rþ�~rÞ, where uð ~k; ~rÞ is the
Bloch function, and the envelope phase is modulated by
the classical trajectory of the electron oscillations with
mean scattering time �. The phase factor of the exact
Schrödinger equation solution for a quasifree particle in
an electromagnetic field is equal to the semiclassical par-
ticle motion [28] (displacement of the oscillating frame):

�~rðtÞ ¼
�
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� ffiffiffiffiffiffiffiffiffi
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2"V

s
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where meff is the effective mass of electrons within the
solid, " is the solid permittivity, "̂k and ! are the field
polarization and angular frequency, and V is the effective
quantization volume. The intraband electron motion deter-
mines the nonstationary dressed states comprising the
virtual state in TPE, whereas the transition from the virtual
state is described by a first-order perturbation term be-
tween the dressed states [Fig. 1(c)]

�ið~r; tÞ ¼ 1=
ffiffiffiffiffiffi
Vc

p jucð ~kc; ~rÞe�i!ctei
~kc ~reþi�c cosð!2tÞ; 0i
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The dressed-state transition matrix element Sd ¼ 2�
@
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p ÞJ1ð�c þ �vÞ, where J1 is the first-
order Bessel function. The final expression [Eq. (6)] is
derived by taking the weak-field limit—namely the first
term in Taylor expansion—and by including a symmetrical
Feynman diagram term [Fig. 1(c)], where the first and
second photon frequencies are interchanged resulting in
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where �c; �v are the relaxation times in the CB and VB.
The relaxation times are in general dispersive—dependent
on the excitation frequency, for both phonon related scat-

tering [29] as well as for carrier-carrier interaction [30]. In
the specific case of room-temperature GaAs at high carrier
injection of 2� 1018 cm�3, the scattering rates were
shown experimentally to be determined by carrier-carrier
scattering [31]. The carrier-carrier scattering rates were
previously reported to be faster than 1=ð100 fsÞ, including
temporal dependence of the screening buildup determined
by the plasma frequency, in agreement with theory [30].
The consideration of frequency dependence of relaxation
constants included in our model yields a significant cor-
rection to the TPE spectrum shape, conforming to our
measurements (Fig. 2). The correct frequency-dependent
level-broadening term, which was previously approxi-
mated by constants [13], appears in the resulting rates.
The experimental measurements of TPE spectrum from

optically pumped bulk GaAs at room temperature (for
details of the measurement procedure, see configuration
in [4]) are in good agreement with the calculated spectrum
(Fig. 2) within �10% error when the dispersive electron-
electron scattering dephasing mechanism is included. The
broad measured TPE spectrum is symmetric about half of
the average transition energy E21. The carrier concentra-
tion levels used in the experiments and calculation �2�
1018 cm�3 determine the scattering rate and its dispersion.
In conclusion, we have developed a dressed-state theory

of semiconductor TPE which is in good agreement with the
observed emission spectrum. Furthermore, we have in-
cluded more accurately the frequency-dependent dephas-
ing mechanisms which are significant in shaping the re-
lated spectrum, as confirmed by the experimental measure-
ment of the spectrum. This theory may be useful for
description of other various delocalized-electron
phenomena.

FIG. 2 (color online). TPE spectrum versus energy normalized
by the average carrier energy. Experimental measurements are
marked by blue triangles, solid black line is the experimental
quadratic fit, while the 1� variance is denoted by the grayed
area; calculated spectrum by the dressed-state method with
constant carrier dephasing time of <100 fsec (dashed red
line), and calculated spectrum with the frequency-dependent
carrier dephasing (dash-dotted purple line).
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