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We settle a long-standing controversy about the exactness of the fractal Einstein and Alexander-Orbach

laws by showing that the properties of a class of fractal trees violate both laws. A new formula is derived

which unifies the two classical results by showing that if one holds, then so must the other, and resolves a

puzzling discrepancy in the properties of Eden trees and diffusion-limited aggregates. We also conjecture

that the result holds for networks which have no fractal dimension. The failure of the classical laws is

attributed to anisotropic exploration of the network by a random walker. The occurrence of this newly

revealed behavior means that the conventional laws must be checked if they, or numerous results which

depend on them, are to be applied accurately.
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Numerous physical systems have been shown to exhibit
anomalous electrical and diffusive transport properties
characterized by power laws with noninteger exponents
[1–12]. In particular, the electrical resistivity increases
with distance r as �ðrÞ � r� , and the distance traveled by

a random walker scales with time as hri � t1=dw , where dw,
the random walk dimension, is generally not 2. In addition
to quantifying mass and electronic transport in materials,
hri and � can be linked to a variety of problems such as oil
recovery in porous rocks [3], chemical reaction rates [4],
cellular processes [5,6], and first passage times associated
with viral infections and animal foraging strategies [4].

The interrelationships between the anomalous power
law exponents are the structure-property correlations for
fractal networks. The Alexander and Orbach (AO) [12] law
states that �d ¼ 2df=dw, where �d and df are the spectral and

fractal dimensions, respectively. Rammal and Toulouse [8]
predicted that the electrical and diffusive properties were
connected by the formula � ¼ dfð2� �dÞ= �d. Combining

both results gives the fractal Einstein (FE) law � ¼ dw �
df, so called because it can also be derived from a result

due to Einstein [1]. These results continue to be employed
to predict the properties of fractal networks and either
underpin, or are used directly in, the study of complex
networks [4,5]. Although there is a preponderance of evi-
dence in their favor, the exactness of both formulas is
controversial [9,10]: Computational results for diffusion-
limited aggregates (DLAs) [13] and Eden trees [14] appear
to violate the laws.

In 1989, Telcs [15] provided sufficient conditions for the
FE law to hold. These include a technical ‘‘smoothness’’
criterion on the electrostatic potential (which must be
measured to test if it holds). The method was adapted to
further prove [16] that if � ¼ dw � df, then �d ¼ 2df=dw
for loopless smooth networks with � > 0; however, the
precise connection between the two laws for general net-
works has not been established. Also note that there exist
important inhomogeneous networks [17] (i.e., networks

which have no df) which have well defined electrical and

diffusive properties, for which no analog of the FE law
exists.
The unexplained exceptions to the conventional laws,

the absence of a proof based on network topology alone,
and the lack of a structure-property law for inhomogeneous
networks highlight the need for ongoing study. In this
Letter, we investigate the properties of a class of fractal
trees [18–21] which violate both conventional laws. The
network (Fig. 1) is made by taking a base unit, doubling its
size, and attaching ui (i ¼ 1; 2) copies of the rescaled unit
to each of the two end points of the base. Continuing the
process indefinitely gives an infinite network with df ¼
ln½2ðu1 þ u2Þ�= lnð2Þ and dw ¼ 2. To find the resistance ��
[18], the infinite network is represented by three resistors
(Fig. 1): the stem of length 1 and two branches of resistivity
�1 and �2. Kirchoff’s law states that �1 ¼ 1þ 2��=u1 and
�2 ¼ 2þ 2��=u2, where 2�� is the resistance of the infi-
nite branches connected to the two end points of the base
unit. Because the shape of each branch is identical to the
original infinite network (but each element is twice as
long), their resistance is 2��. Kirchoff’s law for the
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FIG. 1. A model fractal tree. (a) The base unit; (b) the second
generation of the network obtained by attaching multiple copies
of the rescaled base unit to the end points of the base unit; (c) an
equivalent resistor network used to calculate ��.
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three-resistor circuit gives �� ¼ 1þ 1=ð1=�1 þ 1=�2Þ,
which is quadratic in ��.

Renormalization methods can be used to derive [22] the

spectral dimension via the relation cð0; tÞ � t� �d=2, where
cð0; tÞ is the probability that a random walker visits its
origin at time t. For ðu1; u2Þ � ð1; 1Þ, the quadratic for ��
has a finite positive root, and it can be shown that

�d ¼ log2

�
2½ð2�� þ 3u2Þu1 þ 2��u2�2

u1u2ðu1 þ 12�� þ 4u2Þ þ 4��2ðu2 þ u1Þ
�
:

For the case ðu1; u2Þ ¼ ð1; 1Þ, the quadratic has no positive
solutions (implying �� is infinite), and we can show �d ¼
ln½2ðu1 þ u2Þ�= lnð2Þ. The spatial dependence of the net-
work resistance for large x is obtained from the relation

�ðxÞ ¼ 1þ
��
1þ 2

u1
�

�
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�

�
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:

For �d > 2, the resistivity must have the form �ðxÞ ¼ a0 þ
a1x

� (a0 ¼ ��) (see [9], p. 468). Taking series expansions
leads to � ¼ 2� �d. The same result is achieved if �d < 2.

The properties of the network violate the AO and FE
laws unless u1 ¼ u2 ¼ 1 or u1 ¼ 2u2. For example, u1 ¼
1 and u2 ¼ 20 give �d � 4:37, which does not equal
2df=dw ¼ 5:39. Similarly, � ¼ 2� �d ¼ �2:37 disagrees

with the prediction � ¼ dw � df ¼ �3:34. Standard com-

putations were used [22] to verify �d, dw, and df.

In order to derive a new relationship between the electro-
static and diffusive properties of a network (similar ideas
are used in Refs. [4,9,15,18]), consider the concentration
field generated by the release of a random walker at the
origin at every time step. This concentration is exactly
given by Cðr; tÞ ¼ R

t
0 cðr; �Þd�, where cðr; tÞ is the proba-

bility of finding a random walker at r, after time t, if a
single walker is released at the origin at t ¼ 0. To link the
dynamic and static problems, the integration is terminated

at T ¼ ðR=bÞdw , where b is a number of order 1. As R ¼
bT1=dw is a typical distance reached by the initial walker
after time T, only a very small proportion of the T þ 1
walkers released will exceed this radius; hence Cðr; TÞ � 0
for r � R. In the central region the spatial concentration
profile Cðr; TÞ is assumed to have equilibrated and there-
fore satisfies Laplace’s equation. The boundary conditions
correspond to the potential �ðr;RÞ on a finite network
grounded at radius R due to the supply of unit current (I ¼
1) at the origin. Therefore the resistance is �ðRÞ ¼
�ð0;RÞ=I � Cð0; ðR=bÞdwÞ=I giving

�ðRÞ �
Z ðR=bÞdw

0
cð0; tÞdt�

8><
>:
Rdwð2� �dÞ=2 �d < 2;
logðRÞ �d ¼ 2;
�� �QRdwð2� �dÞ=2 �d > 2;

where Q is a constant. This exactly matches the known
scaling behavior of the resistance if

� ¼ dwð2� �dÞ=2: (1)

Note that the spectral dimension [23], and hence � , are
site independent, even though �� can vary from site to site
if �d > 2. Equation (1) is exact for the fractal trees depicted
in Fig. 1 as dw ¼ 2. Computations of Cð0; ðR=bÞdwÞ (ob-
tained using the diffusion equation) and �ðRÞ (Laplace’s
equation) shown in Fig. 2 support the validity of the
approximation �ðRÞ � Cð0; ðR=bÞdwÞ. The resultant esti-
mates of � are in good agreement with the analytic result
� ¼ 2� �d. To rule out the possibility that Eq. (1) is
restricted to dw ¼ 2, we have also confirmed [22] the result
for trees where the branches are deterministic trees of
increasing iteration.
Table I shows available data [10] for Eden trees [14,24]

and DLA clusters [11,13]. The resistance of loopless frac-
tals is proportional to the length of the shortest path ‘
between two sites which scales [10] as ‘� rdmin (so � ¼
dmin). Equation (1) is seen to provide a good estimate of �
for DLA and Eden trees in three dimensions (in contrast to
the FE law). In two dimensions, Eq. (1) is superior to the
FE law for Eden trees, whereas for DLA both Eq. (1) and
the FE law have a similar level of accuracy and are con-
sistent with � ¼ 1. Data for Eden trees were obtained for
relatively small clusters, and it would be useful to recon-
sider the calculations.
To understand why the AO and FE laws can fail, it is

necessary to consider the assumptions underlying their
derivation. In general, the probability that a walker re-
leased at r ¼ 0 at t ¼ 0 will be at the point r on a network
after time t will depend on the direction of r as well as its
magnitude r ¼ jrj. This probability is denoted as caðr; tÞ,
where the subscript a (anisotropic) differentiates it from
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FIG. 2. The computed resistivity �ðRÞ of three networks (sym-
bols) alongside the concentration Cð0; ðR=bÞdw Þ (dashed lines).
The solid lines represent lines of best fit to �ðRÞ. The network
with ðu1; u2Þ ¼ ð1; 20Þ (�), � ¼ �2:37 (best fit: �2:28); the
network with ðu1; u2Þ ¼ ð1; 3Þ (4), � ¼ �0:941 (best fit:
�0:92); a network with � ¼ 0:5 (h) obtained by taking
ðu1; u2Þ ¼ ð1; 1Þ and quadrupling the branch lengths at each
iteration [22] (best fit: 0.527). Here b (chosen by eye) shifts
the dashed lines horizontally (b ¼ 0:9, 1.1, and 1.1, respec-
tively).
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the function cðr; tÞ used above. The two functions can be
related by cðr; tÞ ¼ S�1

R
S caðr; tÞdS; where SðrÞ � rdf�1

is the area (mass) of the fractal at radius r. cðr; tÞ can be
regarded as a network-spherical average, because the av-
erage on the shell is taken only over the regions occupied
by the network. Equivalently, it can be called [25] the
average probability per site.

After time t, a walker released from the origin will

on average have explored a region of radius R� t1=dw

of volume VðRÞ � Rdf , so
R
VðRÞ caðr; tÞdV � 1. It is gen-

erally assumed that VðRÞ is explored approximately
uniformly [10], so cað0; tÞ

R
VðRÞ dV � 1 or cð0; tÞ �

1=VðRðtÞÞ� t�df=dw . This provides the rationale behind
the AO law. In particular, this requires that the concentra-
tion field is approximately isotropic on the network
[caðr; tÞ � cðr; tÞ]. If this is not true, the volume explored
by the walker will generally not be VðRðtÞÞ. Data shown in
Fig. 3 confirm that caðr; tÞ � cðr; tÞ for the fractal tree with
ðu1; u2Þ ¼ ð2; 1Þ. This tree’s properties follow the AO law
exactly. In contrast, caðr; tÞ is seen to be strongly aniso-
tropic for the fractal tree with ðu1; u2Þ ¼ ð1; 20Þ. We attrib-
ute the breakdown of the AO law to this nonuniform
exploration of the network.

A similar requirement of uniformity is implicitly as-
sumed in the derivation of the FE law. This is clearly
seen in an examination of the total current flow I through
a shell of thickness �r. By definition I ¼ ne� dS�
�r=ð�tÞ, where n is the charge carrier density, e is the
carrier charge, dS is an element of area, and �t is the time
it takes a charge to cross the shell. Now the time scale for
diffusing a distance r is t� rdw , so �t� rdw�1�r.
Summing over the shell gives

I ��r
Z
S

dS

�t
� �r

S

�t
� rdf�dw ;

and therefore � ¼ V=I � rdw�df , which reproduces the FE
law. Although the argument assumes �t is independent of
direction, this is only strictly true if caðr; tÞ is uniform over
the shell. Therefore, if diffusion exhibits preferential di-
rections on the network [as it does for the tree with
ðu1; u2Þ ¼ ð1; 20Þ], the FE law may be invalid.

The fractal tree provides a concrete example of the
qualitative balance arguments expressed above. Recall
that the FE law is obeyed when u1 ¼ 2u2. Rearranging
the expressions for �1 and �2 gives �2u2 � �1u1 ¼ 2u2 �

u1; hence the condition u1 ¼ 2u2 implies �2=�1 ¼
I1=I2 ¼ u1=u2, where Ii (i ¼ 1; 2) are the currents on
each branch. As the ratio of the masses of the branches is
u1=u2, it is seen that conventional scaling holds because
the mass and current on different branches extending from
a node are balanced. However, for the case ðu1; u2Þ ¼
ð1; 20Þ, a significant mass-current imbalance occurs;
although there is 20 times more mass in branch 1 than
branch 2, the current is only about I1=I2 � 3 times greater.
It is interesting to consider why Eq. (1) holds for aniso-

tropic caðr; tÞ. It is obviously possible to define hrðtÞi (and
hence dw) by a suitable average. It is also clear that
resistance (and hence �) can be defined by the current
induced by a unit potential applied between an origin and
an earthed shell at jrj ¼ R. The field �aðr;RÞ is equipo-
tential on this shell, but clearly its approximationRðR=bÞdw
0 caðr; tÞdt is not. Recall, however, that the approxi-

mation needs only to be accurate at the origin, and by
implication this is so. As dw and � both depend on spheri-
cal averages of caðr; tÞ, it is not unexpected that their
interrelationship [Eq. (1)] does not independently incorpo-
rate the mass via df.

As the derivation of Eq. (1) does not require the network
to have a fractal dimension, we propose that Eq. (1) holds
for inhomogeneous networks [17]. Although dw only tech-
nically exists for fractal networks, an analogous exponent
� is defined by hr2i � t�, whereby Eq. (1) becomes � ¼
ð2� �dÞ=�. Consider the fractal tree, which becomes in-

10
0

10
1

10
2

10
−10

10
−8

10
−6

10
−4

r

c(
r,

t)

FIG. 3. The spherically averaged functions cðr; tÞ for the frac-
tal tree with ðu1; u2Þ ¼ ð2; 1Þ (4) and ðu1; u2Þ ¼ ð1; 20Þ (h). The
lines indicate the highest and lowest values of caðr; tÞ at each r.

TABLE I. Equation (1) provides a significantly better estimate of � than the fractal Einstein relationship for Eden trees and three-
dimensional DLA clusters. The table is adapted from Ref. [10] using data from Refs. [11,13,14,24].

Fractal �d dw df �—meas. �—FE law �—Eq. (1)

DLA 2D 1:20	 0:05 [13] 2:64	 0:05 [13] 1:70	 0:02 [13] 1:00	 0:02 [11] 0:94	 0:07 1:05	 0:09
DLA 3D 1:35	 0:05 [13] 3:19	 0:08 [13] 2:48	 0:02 [13] 1:02	 0:03 [11] 0:71	 0:10 1:04	 0:10
Eden tree 2D 1:22	 0:02 [14] 2:82	 0:06 [24] 2 1:22	 0:02 [14] 0:82	 0:07 1:10	 0:05
Eden tree 3D 1:32	 0:02 [14] 3:85	 0:15 [24] 3 1:32	 0:02 [14] 0:85	 0:07 1:31	 0:09
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homogeneous as u2 ! 1 (df ! 1). The argument used to

show � ¼ 2� �d is not altered in this limit, so Eq. (1)
continues to hold. A second example is provided by the
comb lattice [1] with an infinite spine and infinite teeth.
This inhomogeneous network has �d ¼ 3=2 and � ¼ 1
(since the teeth are one-dimensional). The exponent �
can be easily found if the teeth are folded against the spine
(this will not affect �d and�). If the lattice is earthed along a
line perpendicular to the spine (at node 0), the resistance
between the nth node to the left of the line and the line is
�n ¼ 1=ð1=nþ 1=�n�1Þ, with �1 ¼ 1=2. For large n,
�n � �n�1, and the solution of the quadratic is �n ¼

ffiffiffi
n

p
,

so � ¼ 1=2, which is consistent with � ¼ ð2� �dÞ=�.
Our main result [Eq. (1)] generalizes the FE law to

fractals which to not adhere to the AO law as well as to
networks that do not have a well defined fractal dimension.
This is practically useful as � is harder to compute than �d
and dw [10]. Additionally, Eq. (1) represents a conceptual
advance by establishing a simple and direct unification of
the Alexander-Orbach and fractal Einstein laws; if one
holds, then so does the other. For example, Eq. (1) shows
that �d ¼ 2df=dw if, and only if, � ¼ dw � df, irrespective

of the presence of loops or the sign of � (cf. [16]).
We have attributed the breakdown of the FE law to

the existence of anisotropic probability and electrostatic
fields on the network. This corresponds to the nonuniform
exploration of sites at a given distance from the origin by a
random walker. From this perspective, transport is defined
to be isotropic on the network if the AO and FE laws
hold. Note that this a posteriori definition of isotropy skirts
the interesting problem of bounding the degree of al-
lowable local anisotropic variation in the probability and
potential [15] fields. It is simple to visualize highly aniso-
tropic fields on DLA clusters: A tiny fraction of the total
mass will carry the entire current, while long massive
branches that emerge near the origin and fail to touch the
boundary sphere will be equipotential [so �ðrÞ will differ
greatly from �aðrÞ in many places]. Further studies of the
tree model show that the AO and FE laws can still fail when
the branches contain internal loops of increasing scale. A
different model is needed to determine if anisotropic ex-
ploration can occur if the branches have some degree of
interconnection.

The success of the AO and FE laws for the percolation
model and deterministic fractals (such as the Sierpinski
triangle), coupled with the absence of conclusive counter-
examples, has led to their wide acceptance. For example,
the FE law [5] and recent source-to-target times [4] (de-
rived using a propagator which relies on the AO law) have
recently been proposed to model the properties of complex

networks which are defined by highly variable degree
distributions and exhibit modularity. Aspects of these char-
acteristics are represented in the trees considered here: The
branches communicate with the wider network through a
small number of links, and the forks have strongly asym-
metric coordination numbers (u1 þ 1 ¼ 2 and u2 þ 1 ¼
21). It is therefore generally important to test the assump-
tion of isotropic transport (via the AO or FE law).
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