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Quantum computation can proceed solely through single-qubit measurements on an appropriate

quantum state, such as the ground state of an interacting many-body system. We investigate a simple

spin-lattice system based on the cluster-state model, and by using nonlocal correlation functions that

quantify the fidelity of quantum gates performed between distant qubits, we demonstrate that it possesses

a quantum (zero-temperature) phase transition between a disordered phase and an ordered ‘‘cluster phase’’

in which it is possible to perform a universal set of quantum gates.
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Measurement-based quantum computation (MBQC) is a
fundamentally new approach to quantum computing.
MBQC proceeds by using only local adaptive measure-
ments on single qubits. No entangling operations are re-
quired; all entanglement for the computation is supplied by
a fixed initial resource state on a lattice of qubits. The
canonical example of such a resource state is the so-called
cluster state [1,2]. Although a handful of other universal
resources have recently been identified [3–6], there cur-
rently exists very little understanding of precisely which
properties of quantum states allow for universal MBQC.
For example, given a state that is slightly perturbed from
the cluster state, it is not currently known how to determine
if it is a universal resource. New theoretical tools are
required to identify the properties of potential resource
states that allow for universal MBQC.

A useful perspective to approach this problem is to view
the resource state for MBQC as the ground state of a
strongly coupled quantum many-body system. With this
perspective, we propose that the ability to perform MBQC
is a type of quantum order—one which can be identified
using appropriate correlation functions as order parame-
ters. We show that a natural choice for such correlation
functions are the expectation values of nonlocal strings of
operators that can be identified with measurement sequen-
ces for performing quantum logic gates within MBQC.
One way of understanding MBQC is that, by means of a
set of local measurements, it is possible to prepare the
resource states required for gate teleportation [2,7,8] be-
tween distant components of the many-body system. The
performance of the MBQC scheme can be characterized by
calculating the fidelity of the prepared resource state with
the ideal one [9]. This fidelity will depend on a set of
nonlocal correlation functions as a result of the many local
measurements that are required to prepare the resource
state. (Because the fidelity of the identity gate is quantified
by the ability to prepare an entangled state between two
distant qubits using local measurements, it is closely re-

lated to the much-studied property of localizable entangle-
ment [10].) We show that, for the cluster-state implemen-
tation of MBQC, the specific correlation functions corre-
sponding to any gate can be calculated, and we investigate
a specific model where the fidelities of a gate set indeed
serve as order parameters identifying a cluster phase. This
result suggests the existence of spin systems that possess a
phase for which any state is a universal resource for
MBQC. These methods provide new tools for identifying
properties of quantum many-body systems that are re-
quired for MBQC.
Consider the following model system. The cluster state

on a latticeL is defined as the uniqueþ1 eigenstate of a set
of stabilizer operators K� ¼ X�

Q
���Z�, where X� (Z�)

is the Pauli X (Z) operator at site � and where ���
denotes that � is connected to� by a bond in the latticeL.
The Hamiltonian H ¼ �P

�2LK� has the cluster state as

its unique ground state [11]. Although the terms in this
Hamiltonian are many-body interactions, it can be realized
as the effective low-energy theory of a Hamiltonian con-
sisting only of two-body terms [12].
As a model system to consider how robust is this

Hamiltonian in the presence of local perturbations, we
supplement it with a local field term,

HðBÞ ¼ � X
�2L

ðK� þ BX�Þ; (1)

representing a local transverse field with magnitude B. We
refer to a lattice with this Hamiltonian as the transverse-
field cluster model (TFCM), and we will demonstrate the
existence of a single zero-temperature phase transition in
the ground state of such models on both a 1D line and a 2D
square lattice, separating a disordered phase from a ‘‘clus-
ter phase.’’ Rather than solving these models explicitly, we
explore duality transformations that relate these models to
others with well-understood phases and order parameters.
We then demonstrate that the order parameters of these
models, mapped back to the TFCM, are precisely equiva-
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lent to the correlation functions in the cluster state that
quantify the fidelity of the identity gate (i.e., teleportation)
in MBQC. That is, the ability to perform the identity gate
over a long range serves as an order parameter for this
phase; similar results hold for other single-qubit gates as
well. In addition, in two dimensions, we perform a similar
analysis of the two-qubit controlled SIGN (CSIGN) gate,
expði�j1ih1j � j1ih1jÞ, which together with our single-
qubit gates yields a universal gate set for MBQC. (In
contrast, the case with a local longitudinal field instead
of a transverse one was investigated in [13]; this model
demonstrates no such phase but nevertheless can still allow
for MBQC for some range of parameters).

General properties of the transverse-field cluster
model.—We first present some general properties of the
TFCM that are valid in any dimension and on many
lattices, before investigating one- and two-dimensional
models in detail. An immediate observation is that this
model is self-dual. The canonical transformation of Pauli
operators given by applying the CSIGN operation between
all neighboring pairs of qubits takes K� $ X�, and thus

the Hamiltonian (1) transforms as HðBÞ ! BHð1=BÞ. This
self-duality ensures that, if this model has a single quantum
phase transition in the range B> 0, then it must occur at
B ¼ 1.

Also, consider lattices which are bipartite, meaning we
can divide the sites into two subsetsLr andLb, labeled red
and blue, such that the neighbors of any site are all of the
other color. With this coloring, the Hamiltonian (1) can be
written as the sum of two commuting terms, H ¼ Hr þ
Hb, where

Hr ¼ � X
�2Lb

K� � B
X

�2Lr

X�; (2)

with Hb consisting of the remaining terms. In the follow-
ing, we present mappings of Hr (equivalently, Hb) in one
and two dimensions to known models, which allows us to
identify the phases and relevant order parameters.

One dimension.—Consider the TFCM on a 1D lattice
with fixed boundary conditions—a line. A state of a 1D
lattice cannot serve as a universal resource for MBQC;
however, it will be illustrative to consider this model as a
prelude for studying higher dimensions. The Hamiltonian
(1) on a line with boundary terms is

HðBÞ ¼ � XN�1

i¼2

ðZi�1XiZiþ1 þ BXiÞ � X1Z2 � BX1

� ZN�1XN � BXN: (3)

The ground state of this Hamiltonian is nondegenerate, and
for B ¼ 0 is given by the 1D cluster state on a line. Pachos
and Plenio [14] have shown explicitly that this model (with
periodic boundary conditions) exhibits a quantum phase
transition at jBj ¼ 1, and that the localizable entanglement
length remains infinite for all values jBj< 1. Their method
makes use of the Jordan-Wigner transformation to yield a

linear fermionic system. We provide a more direct trans-
formation to a known model—the transverse-field Ising
model [15]—which provides a natural generalization to
higher-dimensional lattices.
Our duality transformation is as follows. On red (even)

sites, the Pauli operators transform as

X2j ! �X2j; Z2j !
�Yj
k¼1

�X2k�1

�
�Z2j: (4)

On blue (odd) sites, the Pauli operators transform as

X2j�1 ! �X2j�1; Z2j�1 ! �Z2j�1

�YN
k¼j

�X2k

�
: (5)

This mapping is canonical, meaning the new Pauli matrices
�Xj and �Zj satisfy the correct commutation and anticom-

mutation relations. An illustration of this transformation is
presented in Fig. 1(a). We emphasize that this duality
transformation is nonlocal, and thus the properties of a
system for MBQC are not preserved under this mapping.
However, as we now demonstrate, the phases and order
parameters of this dual model are well-studied and will
allow us to completely classify the phases as well as
calculate the fidelities of the MBQC quantum gates in
the original TFCM.
We consider only the case where N is even. In terms of

transformed Pauli operators, the Hamiltonian Hr acts only
on red sites and has the form

FIG. 1 (color online). (a) The duality transformation of
Eqs. (4) and (5) on a 1D line. (b) A generalization of this duality
transformation to a 2D square lattice.
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Hr ¼ � �Z2 �
XN=2

i¼2

ð �Z2ði�1Þ �Z2i þ B �X2iÞ: (6)

The Hamiltonian Hb is similar, acting only on blue sites,
with a �Z boundary term at j ¼ N. This mapping on the
TFCM, then, yields two identical transverse-field Ising
models, one on each of Lr and Lb. Each has a local �Z
field term which breaks the symmetry in the ordered (jBj<
1) phase and specifies a unique ground state. The ground
state of the total lattice is then nondegenerate and is given
by the product state of these two unique ground states.

The solution to this known model allows us, via the
duality transformation, to completely characterize the
TFCM. For example, the phases of the TFCM are specified
by the well-studied phases of the transverse-field Ising
model; in particular, there is a unique quantum phase
transition at jBj ¼ 1 [16]. Also, the well-known order
parameters for the transverse-field Ising model can be
mapped, using the duality transformation, to order parame-
ters for the TFCM. In the ordered phase of the transverse-
field Ising model, the correlation functions h �Z �Zi (for both
colors) are long ranged. [Specifically, limk!1h �Zi

�Ziþki ¼
ð1� jBj2Þ1=4 for jBj< 1 [16].] We can use this result to
make a corresponding statement about correlation func-
tions for the TFCM. By reversing the duality transforma-
tion, we have

h �Z2i�1
�Z2j�1i !

�
Z2i�1

�Yj�1

k¼i

X2k

�
Z2j�1

�
¼

�Yj�1

k¼i

K2k

�
;

(7)

h �Z2i
�Z2ji !

�
Z2i

�Yj�1

k¼i

X2kþ1

�
Z2j

�
¼

�Yj�1

k¼i

K2kþ1

�
: (8)

That is, in the phase jBj< 1 wherein h �Z �Zi is long-ranged,
the stringlike operators corresponding to the product of
even (or odd) stabilizers Ki in the TFCM are also long-

ranged, with the limiting value ð1� jBj2Þ1=4. These two
correlation functions are all that is needed to calculate the
fidelity of the resource state for the identity gate with the
ideal maximally-entangled state, and it is found to be>1=4
for all jBj< 1. (The average fidelity of a randomly chosen
state yields 1=4.) The same calculation for other single-
qubit Clifford gates [17] and for an arbitrary Z rotation
Uzð�Þ ¼ expð�i�ZÞ (a non-Clifford gate), yields the same
result [9].

Thus, this duality transformation has allowed us to prove
our desired results: First, that the TFCM does indeed
possess a phase, given by jBj< 1, which we denote the
cluster phase. The order parameters of this phase, given by
products of even or odd stabilizer operators Ki, demon-
strate that quantum gates can be performed with high
fidelity (relative to a randomly chosen state) using any
state within this phase. The ground states in this phase
are indeed ‘‘robust’’ against variations in the precise value
of B. However, the one-dimensional cluster state is not a

universal resource for MBQC, and so we direct our atten-
tion to a two-dimensional model.
Two dimensions.—We consider a square lattice; the

cluster state on this lattice is a universal resource for
MBQC. This lattice is bipartite, and thus we can define
the commuting Hamiltonians Hr and Hb as above. We use
a natural generalization of the 1D duality transformation,
as follows. On red sites, Pauli operators transform as X� !
�X� and Z� ! ðQ�0>�

�X�0 Þ �Z�, whereas on blue sites,

X� ! �X� and Z� ! �Z�ðQ�0<�
�X�0 Þ. Here, �0 >� (�0 <

�) denotes that�0 lies in the upper (lower) cone relative to
� as in Fig. 1(b). Again, one can easily verify that this
transformation is canonical.
Under this mapping, each stabilizer maps to a mono-

chromatic operator consisting only of �Z terms.
Nonboundary stabilizers map to products of four �Z opera-
tors on the corners of a fundamental plaquetteh; boundary
conditions can be chosen such that boundary stabilizers
map to two- �Z and one- �Z terms. The Hamiltonian Hr (Hb)
on Lr (Lb) maps to

H ¼ �X
h

�Z �Z
�Z �Z

� B
X
�

�X�; (9)

plus boundary terms (not shown) which ensure a nonde-
generate ground state for all B. This model possesses a
phase transition at jBj ¼ 1 [18,19]. Thus, through this
duality map, we know that the 2D TFCM has a phase tran-
sition at jBj ¼ 1, and we use the term cluster phase to
denote the jBj< 1 phase. In addition, this model of Eq. (9)
is dual to the anisotropic quantum orbital compass model

(a) (b)

FIG. 2 (color online). (a) A measurement pattern on the cluster
state that localizes entanglement between sites ain and aout,
where X (Z) denotes a measurement in the X basis (Z basis).
The two stringlike stabilizers, centered on sites connected by the
shaded red and shaded blue diagonal lines, have long-ranged
expectation values in the jBj< 1 phase; these correlation func-
tions directly quantify the fidelities of single-qubit gates between
ain and aout in MBQC. (b) The measurement sequence corre-
sponding to the CSIGN gate between a and b. The expectation of
four stabilizers characterizes the CSIGN gate: KainK3Kaout ,

KbinK4Kbout , K1K4, and K2K3. These stabilizers can be appended

with diagonal strings of red (blue) stabilizers in the direction of
the arrows [and terminated with Z measurements as in (a)] to
reach distant qubits. With X measurements on qubits 1–4, the
resulting state provides the CSIGN transformation.
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(AQOCM) [20–23], with a mapping that also locally
maps the boundary terms. The key advantage of the
AQOCM is that it contains only two-body terms in the
Hamiltonian, and is therefore very amenable to numerical
investigation. For example, the projected entangled-pair
state algorithm applied to this model provides very strong
evidence that the phase transition is first order [24]. The
model also possesses correlation functions for an Ising
order parameter that simulations indicate are long-ranged
for jBj< 1 [24].

Inverting this duality transformation and returning to the
TFCM, these Ising-type correlation functions map onto
strings of monochromatic stabilizers along diagonal lines
in the square lattice [see Fig. 2(a)]. Again using the corre-
lation functions for single-qubit gates given in [9], we find
that these strings of monochromatic stabilizers character-
ize the fidelities of the identity gate and a generating set of
single-qubit gates between two distant points, and serve as
order parameters for the cluster phase.

In addition, in this 2D model, we can consider two-qubit
gates. We make use of the elementary measurement pattern
for a CSIGN gate on two qubits which are subsequently
swapped, as given in Refs. [2,9] and shown in Fig. 2(b).
The desired long-ranged correlation functions on the
AQOCM are of the form of 4-body correlators
h ~Zði;j0Þ ~Zði;j�Þ ~Zðiþ1;j�Þ ~Zðiþ1;j1Þi, where j� is an intermediate

column between j0 and j1. Such 4-body correlation func-
tions should be possible to numerically evaluate in the
AQOCM using recent techniques. The CSIGN together
with the above single-qubit gates yields a universal gate
set, and thus the cluster phase is indeed characterized by
the fidelities of a universal gate set for MBQC.

Discussion.—Using the TFCM as an example, we have
demonstrated the utility of correlation functions corre-
sponding to quantum gates as order parameters to identify
a phase according to its usefulness for MBQC. The per-
spective of quantum-computational universality of a state
as a new type of quantum order may assist in identifying
new quantum systems that can be used for MBQC.

The behavior of the TFCM contrasts with the model
considered in [13], which is the cluster-state Hamiltonian
perturbed by a local Z field. In that model, the gate corre-
lation functions discussed in this Letter become short-
ranged at any nonzero perturbation. However, by prepro-
cessing with certain local filtering operations, it is still
possible to perform MBQC for sufficiently low field and
sufficiently low temperature [13]. Unlike the TFCM, the
model of [13] does not undergo a phase transition. These
behaviors are very reminiscent of the quantum Ising model
in one dimension: where there is a broken symmetry that
disappears at a phase transition for sufficiently large trans-
verse field but longitudinal fields destroy the ground state
order without any phase transition.

One could also ask whether these ordered phases persist
to finite temperature. As our model is gapped except at the
phase transition, it is possible for a finite-sized thermal

system to be cooled to have arbitrarily high overlap with
the ground state (although this becomes a challenge close
to the phase transition). In one dimension, the fact that the
transverse-field Ising model does not maintain an ordered
phase at any finite temperature demonstrates that the 1D
TFCM does not either. In two dimensions, it is less clear.
For this reason, it would be worth investigating the TFCM
on a three-dimensional lattice such as in [11], for which the
B ¼ 0model is known to allow for fault-tolerant MBQC at
finite temperature [11,13,25].
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Dan Browne, and Terry Rudolph, and the support of the
Australian Research Council.

[1] R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188
(2001).

[2] R. Raussendorf, D. E. Browne, and H. J. Briegel, Phys.
Rev. A 68, 022312 (2003).

[3] D. Gross and J. Eisert, Phys. Rev. Lett. 98, 220503 (2007).
[4] D. Gross et al., Phys. Rev. A 76, 052315 (2007).
[5] M. Van den Nest et al., New J. Phys. 9, 204 (2007).
[6] G. K. Brennen and A. Miyake, Phys. Rev. Lett. 101,

010502 (2008).
[7] D. Gottesman and I. Chuang, Nature (London) 402, 390

(1999).
[8] A.M. Childs, D.W. Leung, and M.A. Nielsen, Phys. Rev.

A 71, 032318 (2005).
[9] T. Chung, S. D. Bartlett, and A. C. Doherty, Can. J. Phys.

87, 219 (2009).
[10] M. Popp et al., Phys. Rev. A 71, 042306 (2005).
[11] R. Raussendorf, S. Bravyi, and J. Harrington, Phys. Rev. A

71, 062313 (2005).
[12] S. D. Bartlett and T. Rudolph, Phys. Rev. A 74, 040302(R)

(2006); T. Griffin and S.D. Bartlett, Phys. Rev. A 78,
062306 (2008).

[13] S. D. Barrett et al., arXiv:0807.4797.
[14] J. K. Pachos and M.B. Plenio, Phys. Rev. Lett. 93, 056402

(2004).
[15] J. B. Kogut, Rev. Mod. Phys. 51, 659 (1979).
[16] P. Pfeuty, Ann. Phys. (N.Y.) 57, 79 (1970).
[17] M.A. Nielsen and I. L. Chuang, Quantum Computation

and Quantum Information (Cambridge University Press,
Cambridge, England, 2000).

[18] C. Xu and J. E. Moore, Phys. Rev. Lett. 93, 047003
(2004).

[19] C. Xu and J. E. Moore, Nucl. Phys. B716, 487 (2005).
[20] Z. Nussinov and E. Fradkin, Phys. Rev. B 71, 195120

(2005).
[21] B. Doucot et al., Phys. Rev. B 71, 024505 (2005).
[22] J. Dorier, F. Becca, and F. Mila, Phys. Rev. B 72, 024448

(2005).
[23] D. Bacon, Phys. Rev. A 73, 012340 (2006).
[24] R. Orus, A. C. Doherty, and G. Vidal, Phys. Rev. Lett. 102,

077203 (2009).
[25] R. Raussendorf, J. Harrington, and K. Goyal, Ann. Phys.

(N.Y.) 321, 2242 (2006); R. Raussendorf, J. Harrington,
and K. Goyal, New J. Phys. 9, 199 (2007).

PRL 103, 020506 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
10 JULY 2009

020506-4


