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It is proposed that in s-wave superfluids of cold fermionic atoms with laser-field-generated effective

spin-orbit interactions, a topological phase with gapless edge states and Majorana fermion quasiparticles

obeying non-Abelian statistics is realized in the case with a large Zeeman magnetic field. Our scenario

provides a promising approach to the realization of quantum computation based on the manipulation of

non-Abelian anyons via an s-wave Feshbach resonance.
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Introduction.—Recently, there has been considerable
interest in topological phases of quantum many-body sys-
tems, which are characterized by the following features [1–
4]: (i) there are topologically protected gapless edge states
on surface boundaries of the systems, which are stable
against local perturbations, (ii) for two-dimensional (2D)
systems, there are quasiparticles with fractional quantum
numbers (e.g., fractional charges) termed ‘‘anyons.’’ To
this time, the possibility of realizing topological phases
has been studied for various states realized in condensed
matter systems, such as quantum (spin) Hall states [2],
vortex states of pþ ip superconductors [5,6], and spin
liquid states [3,7], and for cosmological systems such as
axion strings [8]. The feature (ii) is particularly of interest
in connection with the realization of fault-tolerant quantum
computation based on the manipulation of non-Abelian
anyons [3,7,9,10]. Since topological phases provide not
only a novel paradigm of quantum ground states but also
a potential breakthrough for technological advance, it is
desirable to pursue various possible schemes for their
realization.

In this Letter, we propose a scenario in which a topo-
logical phase, possessing gapless edge states and non-
Abelian anyons, is realized in a BCS s-wave superfluid
(SF) of ultracold fermionic atoms in an optical lattice with
a laser-field-generated effective spin-orbit (SO) interac-
tion. It is possible to generate an artificial SO interaction
that acts on atoms by using spatially varying laser fields
[11,12]. The effective SO interaction is a key factor in our
scenario of the topological phase. Recently, topological
phases in superconductors and SFs have been investigated
by several authors [5,6,10,13–15]. The previous studies,
however, focus on the p-wave pairing state [16]. BCS gaps
of p-wave superconductors in solid state systems are typi-
cally very small, and it is difficult to utilize them for
topological quantum computation, because topological
phases are destroyed by thermal excitations beyond bulk
energy gaps. For cold atoms, in principle, a p-wave SF
with a large BCS gap can be produced via a p-wave
Feshbach resonance [10]. However, unfortunately, this

has not yet been realized because of huge loss [17].
Contrastingly, s-wave SFs of cold atoms with large BCS
gaps have been realized via an s-wave Feshbach resonance
[18]. Thus, our scenario based on s-wave SFs of cold atoms
is deemed more advantageous for the realization of the
topological order than that using p-wave SFs via a p-wave
Feshbach resonance. Moreover, there is an important dif-
ference between the topological phase considered here and
that of p-wave SFs. For chiral p-wave SFs, the non-
Abelian anyons are vortices of the SF order parameter,
which contain Majorana fermion modes. In striking con-
trast, in our system, the non-Abelian anyons are vortices of
the SO interaction, i.e., the phase twist caused by the
orbital motion accompanying spin flip. We propose an
experimental scheme for generating and controlling vorti-
ces in the SO interaction, i.e., non-Abelian anyons, which
are stabilized by use of a carefully designed laser setup
rather than spontaneously formed macroscopic conden-
sates. This scheme can be carried out by utilizing current
sophisticated laser techniques. Thus, our proposal provides
a promising approach to the realization of topological
quantum computation based on the manipulation of non-
Abelian anyons.
Model and analysis of the topological phase.—Let us

consider an s-wave SF of neutral fermionic atoms in the 2D
optical square lattice, which is described by the
Hamiltonian H ¼ H kin þH SO þH s:

H kin ¼ �t
X
i�

X
�̂¼x̂;ŷ

ðcyiþ�̂�ci� þ cyi��̂�ci�Þ

��
X
i�

cyi�ci� � h
X
i

ðcyi"ci" � cyi#ci#Þ;

H SO ¼ ��
X
i

½ðcyi�x̂#ci" � cyiþx̂#ci"Þ

þ iðcyi�ŷ#ci" � cyiþŷ#ci"Þ þ H:c:�;
H s ¼ �X

i

c sðcyi"cyi# þ H:c:Þ;

(1)

where cyi� (ci�) denotes a creation (annihilation) operator

PRL 103, 020401 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
10 JULY 2009

0031-9007=09=103(2)=020401(4) 020401-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.103.020401


of the fermionic atom with pseudospin � ¼ ð"; #Þ at site
i ¼ ðix; iyÞ, and c s the gap function. x̂ (ŷ) is a basic

lattice vector along the x (y) axis. H SO is an effective
Rashba type SO interaction [19]. We will discuss later the
method of generating the Rashba SO interaction for neutral
atoms via laser fields. We also introduce the chemical
potential � and the Zeeman term induced by a magnetic
field h. In the momentum space, the Hamiltonian is recast

into H ¼ 1
2

P
kðcyk ; c�kÞH ðkÞðck; cy�kÞT with cyk ¼

ð1= ffiffiffiffi
V

p ÞPie
ikiðcyi"; cyi#Þ, and

H ðkÞ ¼ �k � h�z þ gk � � ic s�y

�ic s�y ��k þ h�z þ gk � ��
� �

;

(2)

where �k ¼ �2tðcoskx þ coskyÞ ��, gk ¼ 2�ðsinky;
� sinkxÞ, and � ¼ ð�x; �yÞ the Pauli matrices.

As mentioned in the introduction, the non-Abelian to-
pological order is characterized by the existence of gapless
chiral edge states propagating only in one direction and the
existence of the non-Abelian anyons [5]. The former is also
associated with the nonzero Chern number [20]. In the
following, we demonstrate that these features are indeed
realized in the system (1) when a certain relation among�,
h, and c s holds [Eq. (5) below].

A key observation of our analysis is that the Hamiltonian
H ðkÞ is unitary equivalent to the following ‘‘dual’’
Hamiltonian H DðkÞ,

H DðkÞ ¼ c s � h�z �i�k�y � igk � ��y

i�k�y þ igk�y� �c s þ h�z

� �
;

(3)

with the unitary transformation

H DðkÞ ¼ DH ðkÞDy; D ¼ 1ffiffiffi
2

p 1 i�y

i�y 1

� �
: (4)

From Eq. (3), it is found that the Rashba SO interaction
gk � � in the original HamiltonianH ðkÞ is formally trans-
formed into a ‘‘p-wave SF gap’’ with the d vector, dD

k �

�gk, in the dual Hamiltonian H DðkÞ. However, this does
not necessarily mean that the topological properties of
H ðkÞ are the same as those of a p-wave SF, since
H DðkÞ has a nonstandard constant kinetic term �Dk �
c s. A similar p-wave SF state with a constant kinetic
energy term was considered before in the context of the
quantum-Hall effect (QHE) state [5]. An important feature
of (3) is that the topological order emerges when �, h, and
c s satisfy

c 2
s þ �ð0; 0Þ2 < h2 < c 2

s þ �ð�; 0Þ2; (5)

with �ðkx; kyÞ � �k. Here note that although the condition

(5) implies the Zeeman energy larger than the BCS gap c s,
the superfluidity is stable when � � h [21]. This stability
is specific to neutral atomic systems. For electron systems,
such large magnetic fields usually destroy superconductiv-
ity via an orbital depairing effect.
Let us first examine edge states in our model. Figure 1

illustrates the energy bands obtained by diagonalizing the
lattice Hamiltonian (1) with the open boundaries at ix ¼ 0,
L for various h. Here we have taken the periodic boundary
condition in the y direction, and ky 2 ½��;�� is the lattice
momentum in the y direction. By increasing h from zero
adiabatically, it is found that the bulk energy gap closes at

h ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c 2

s þ �ð0; 0Þ2p
[Fig. 1(b)], then, for h satisfying (5),

a gapless edge mode with a linear dispersion E� cky (E�
�cky) localized on the one edge (the other edge) appears

between the bulk energy gap [Fig. 1(c)]. This chiral edge
state is stable against any weak local perturbations pro-
vided that there exists the nonzero Chern number; i.e., the
topological number equivalent to the total number of gap-
less chiral edge modes, which was first introduced in the
case of the QHE states [20]. We calculated the Chern
number Q for H ðkÞ or equivalently H DðkÞ. [Since the
Chern number is calculated from the Berry curvature in the
momentum space, it is not affect by the unitary transfor-
mation D which is independent of k, ensuring the topo-
logical equivalence between (2) and (3).] We found that
Q ¼ 1 when the condition (5) is satisfied [22]. This is
consistent with the numerical results for edge states shown
above.
We now demonstrate that there exist the non-Abelian

anyons in our system. For this purpose, we solve the
Bogoliubov–de Gennes (BdG) equation for a single vortex:
If there exists a single Majorana fermion zero mode for
each vortex, vortices obey the non-Abelian statistics [5,6].
We use the dual Hamiltonian H D to solve the BdG equa-
tion, then construct a solution in the original Hamiltonian
H by using the duality transformation (4). For simplicity,
we assume �ð0; 0Þ ¼ 0 for the time being. Then, low-
energy properties are governed by fermions on the Fermi
surface, which is split into jkj � 0 and jkj � �=t by the SO
interaction, but the larger Fermi surface (jkj � �=t) can be
neglected for the zero mode [22]. Thus, we concentrate on
fermions with k � ð0; 0Þ, for whichH DðkÞ is decomposed

a) b) c)
E E E

ky ky ky-π -π -ππ π π

FIG. 1 (color online). The band energy of the lattice
Hamiltonian (1) with edges at ix ¼ 0 and ix ¼ 50 ð¼ LÞ. Here
ky 2 ½��;�� denotes the momentum in the y direction. We set

t ¼ 1, � ¼ �4, � ¼ 0:5, and c ¼ 0:5. h are (a) h ¼ 0,
(b) h ¼ 0:5, (c) h ¼ 0:8. The red thin line indicates a gapless
chiral edge mode localized on the one side and green thick line a
gapless chiral edge mode on the other side. They appear forffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c 2 þ �ð0; 0Þ2p

< h<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c 2 þ �ð0; �Þ2p

.
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into the following two 2	 2 matrices H Dþ and H D�,

H D
ðkÞ ¼ c s � h 2�ð
ky þ ikxÞ
2�ð
ky � ikxÞ �c s 
 h

� �
: (6)

We consider a single vortex of the ‘‘p-wave SF gap’’
2�ð
ky þ ikxÞ. The BdG equations for H D
 with the

single vortex can be solved by using the method developed
in [5]. Then, we find a unique zero energy solution with a

quasiparticle field �y ¼ R
dr½u0c y

þ þ v0cþ�, where

u0 ¼ iðrei�Þ�1=2e�ðh�c sÞr=2�, v0 ¼ �iðre�i�Þ�1=2 	
e�ðh�c sÞr=2� [22]. The solution is normalizable when (5)
is satisfied. This is the Majorana zero energy mode; i.e.,
�y ¼ �. Using the duality transformation (4), we found
that a vortex in the original Hamiltonian has a single
Majorana zero mode given by Dðu0; 0; v0; 0ÞT , which im-
plies that the vortex is a non-Abelian anyon [5].

From the construction of the zero mode above, we notice
that there is an important difference between a chiral
p-wave SF and our system: While for a spinless chiral
p-wave SF, a single Majorana zero mode exists in a vortex
of the SF order parameter, for our noncentrosymmetric
s-wave SF, a Majorana zero mode exists in a vortex twist-
ing a phase of the SO interaction. This difference can be
understood immediately from the duality (3) since a vortex
in a gap function in the dual Hamiltonian is transformed
into a vortex in the SO coupling. So far, we have assumed
�ð0; 0Þ ¼ 0, but even when �ð0; 0Þ � 0, the existence of the
non-Abelian topological order is robust as long as h sat-
isfies (6), because the topological character is not changed
unless the bulk gap closes [14].

For the detection of the non-Abelian anyons, it is desir-
able that the zero energy state in a vortex is well separated
from excited states, the interaction with which may cause
decoherence. The excitation energy in the vortex core is
due to the kinetic energy which stems from the derivative
term of the BdG equation, 2�ð�i@y þ @xÞ. Since the above
solution for (u0, v0) indicates that the size of the vortex
core is�2�=ðh� c sÞ, the excitation energy is of the order
�2�=ð2�=ðh� c sÞÞ� h� c s. It can be tuned to be rela-
tively large, and thus the experimental detection of the non-
Abelian anyons is quite feasible.

Possible realization in cold fermionic atoms.—We now
propose an experimental scheme for the realization of the
topological phase mentioned above in ultracold fermionic
atoms. It was recently pointed out by several authors that
effective gauge fields interacting with atoms can be gen-
erated by spatially varying laser fields [11,12]. These ideas
can be utilized for our purpose. We consider fermionic
atoms loaded in a 2D periodic optical lattice, where there
is no hopping along the z direction [11]. The atoms occupy
doubly degenerate Zeeman levels of the hyperfine ground
state manifolds, which are, respectively, the ‘‘spin-up’’
state j"i and the ‘‘spin-down’’ state j#i. We introduce the
Zeeman field to lift the degeneracy. The Zeeman level split
is denoted as EZ. It is assumed that standard tunneling of

atoms between sites due to kinetic energy is suppressed by
the large depth of the optical lattice potential. Tunneling of
atoms between neighboring sites along the � direction
(� ¼ x, y) which conserves spins is caused by laser beams
with the Rabi frequency��0 via optical Raman transitions
as proposed in Refs. [11,23]; i.e. ��0 ¼ �0

1�
0
2=2� with

�0
1;2 the Rabi frequencies for the transition between the

ground state and an excited state, and � detuning from the
excited state. In addition, tunneling which accompanies
spin flip is also driven by two Raman lasers [11]. In
Fig. 2, we show the optical lattice setup. The laser with
the Rabi frequency ��1 (��2) is resonant for transition
j"i ! j#i for the tunneling between neighboring sites in the
forward (backward) � direction. As proposed in Ref. [11],
the confining optical potential is tilted along both the
x direction and the y direction to assure that the forward
and backward tunneling processes are, respectively, in-
duced by the lasers with the different Rabi frequencies
��1 and ��2, which are required for the realization of
the Rashba spin-orbit interaction as discussed below. The
energy shift between nearest neighbor sites due to the
tilting potential is �x for the x direction and �y for the

y direction. We impose the condition �x � �y to prevent

tunneling with spin flip along the yðxÞ direction due to the
lasers with �xðyÞ1;2. It is also assumed that the detuning

from excited states for optical Raman transitions is much
larger than �xðyÞ, and thus the spatial variation of the

amplitudes of the Rabi frequencies due to the tilting po-
tential is negligible. To realize the Rashba spin-orbit inter-
action for the two Zeeman levels, we choose the phases of
the lasers as follows. The lasers are propagating along
the z direction with an oscillating factor eikzz. The Rabi
frequency�x2 is expressed as�x2 ¼ j�x2jeikzz. The phase
of the laser �x1 is shifted by � from that of �x2, and
�x2 ¼ ��x1 holds. The phase of �y1 (�y2) is shifted by

��=2 (�=2), and �y2 ¼ �i�x1, �y2 ¼ ��y1. Then,

the laser-induced tunneling term which accompanies spin

∆ν

Ων1Ων2

E

V

2ν/λnn-1 n+1

Ων0

z

FIG. 2. Setup of the confining optical potential for the ground
state. � ¼ x or y. Bold up and down arrows indicate, respec-
tively, the spin-up and spin-down states. In this figure, excited
levels which mediate the hopping via two Raman lasers are not
shown explicitly.
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flip is expressed by H SO ¼ P
i½�xðcyi�x̂#ci" � cyiþx̂#ci"Þ þ

i�yðcyi�ŷ#ci" � cyiþŷ#ci"Þ þ H:c:� with �� ¼ c�
R
drc �

# ðr�
ri��̂Þ��2ðrÞc "ðr� riÞ, � ¼ x, y, and cx ¼ 1, cy ¼ �i.

Since we consider the 2D xy plane with z ¼ 0, �� is real.
For �x ¼ �y, H SO is the Rashba SO interaction.

To create vortices of the SO interaction, which are key
ingredients for the realization of non-Abelian anyons, we
replace the lasers that generate the SO interaction with
those carrying orbital angular momentum parallel to the
z axis. Such lasers can be prepared by using Laguerre-
Gaussian beams [24]. Then, a ‘‘vortex’’ of the SO interac-
tion is introduced: �� ! ��e

im�. The vorticity m is con-
trolled by changing the configuration of the lasers.
Furthermore, the spatially separated multiple vortices can
be generated by using the following method. After intro-
ducing a vortex with vorticitym into the system, we switch
the Laguerre-Gaussian beam to a Gaussian beam, i.e., a
laser without angular momentum [24]. The vortex still
exists in the system, because of the conservation of the
total angular momentum. However, for m> 1, the vortex
with higher charges become energetically unstable toward
dissociation into m vortices with single vorticity, and thus
spatially separated multiple vortices are created in the
system [25]. This multiple vortex state allows the realiza-
tion of the non-Abelian statistics of vortices.

We can use the Feshbach resonance in the s-wave chan-
nel for the formation of the s-wave Cooper pairs in this
system [18]. Then, the topological phase described by the
Hamiltonian (1) is realized. In this scheme, the role of the
s-wave superfluidity is twofold. One is to suppress bulk
gapless quasiparticles which are harmful for topological
stability. The other one is to generate the superposition of
particles and holes, which results in the Majorana quasi-
particles in vortices and edge states. It is noted that the
vortices in the SO interaction are stabilized by the carefully
designed laser setup rather than by macroscopic conden-
sates. It should be emphasized that this experimental
scheme is feasible for currently accessible laser tech-
niques. As mentioned before, the non-Abelian anyons are
stable for sufficiently low energies � minfh� c s; c sg.
Since c s can be tuned to be large, i.e., c s � EF, by using
the s-wave Feshbach resonance, the realization of the non-
Abelian anyons in this scheme is quite promising.

Summary.—We have proposed a feasible scheme for the
realization of the non-Abelian topological phase in an
s-wave superfluid of cold atoms in an optical lattice, in
which the non-Abelian anyons exist, and opens a possible
way to realize topological quantum computation.
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