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We present a theory of electron-mediated interaction between adatoms in graphene. In the case of

resonant scattering, relevant for hydrogenated graphene, a long-range 1=r interaction is found. This

interaction can be viewed as a fermionic analog of the Casimir interaction, in which massless fermions

play the role of photons. The interaction is an attraction or a repulsion depending on whether the adatoms

reside on the same sublattice or on different sublattices, with attraction dominating for adatoms randomly

distributed over both sublattices. The attractive nature of these forces creates an instability under which

adatoms tend to aggregate.
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Unique transport characteristics of graphene make it a
strong candidate for replacing silicon in future electronic
devices [1]. Functionalizing graphene by controllable oxi-
dation [2,3] or hydrogenation [4,5] can change its proper-
ties in new, unexpected ways. In particular, when hydrogen
adatoms bind to graphene, the orbital state of each func-
tionalized carbon atom changes from sp2 to sp3 configu-
ration, removing� electrons from the conduction band and
turning graphene into a semiconductor [6]. Remarkably,
semiconducting properties appear even at a relatively small
concentration of adatoms [5]. This provides a unique tool
to control electronic properties of this material [7,8].

One of the interesting questions posed by the experiment
[5] has to do with the interaction between adatoms medi-
ated by electron scattering. As we shall see, resonant
scattering on the midgap states localized on adatoms [9–
11] leads to dramatic enhancement of interaction, making
it long ranged. We find that the interaction between ada-
toms falls off very slowly, approximately inversely with the
distance,Uðr & @v0=�Þ � r�1, where � is the energy of an
adatom resonance [see Eq. (4)]. The sign of interaction
depends on the sublattice type: two atoms residing on
different sublattices (A and B) attract, whereas atoms on
the same sublattice repel [see Eqs. (11) and (13)].

The r�1 interaction is stronger than the long-range
interaction between adatoms on surfaces of metals [12–
14], which is of a Friedel-oscillation (FO) character. The
FO interaction falls off as r�2 when it is mediated by
electronic states on the surface, and as r�3, when mediated
by the states in the bulk [15,16]. The FO interaction can
occur in graphene [17]. Long-range interaction can lead to
fascinating collective behavior of adatoms, such as self-
organization into chains [14] and superlattices [18].

The interaction analyzed in this work can be interpreted
as a fermionic Casimir effect. The Casimir interaction
between two bodies (or, atoms) arises due to scattering of
virtual photons. For each of the bodies, angular distribution
of the flux of incident virtual photons is somewhat aniso-

tropic due to the presence of a second body, giving rise to a
net attraction force. This interaction is of a generic char-
acter (fermionic Casimir effect was recently analyzed in
one-dimensional systems [19]).
We find that attraction between atoms on different sub-

lattices is stronger by a logarithmic factor than repulsion
within the same sublattice. The net interaction of atoms
equally distributed among the two sublattices is thus an
attraction, characterized by the energy density

EðnÞ ¼�"0n
3=2; n* ð�=@v0Þ2; "0 � 1:3 eV; (1)
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FIG. 1 (color online). Electron-mediated interaction between
adatoms in graphene modeled by a hard-core potential: numeri-
cal results (black dots) and mean-field theory, Eq. (18) [red
(medium gray) line]. The net interaction is a repulsion when
adatoms are randomly placed on one of the sublattices, and an
attraction when they are equally distributed over both sublatti-
ces. The 3=2 power law (1) provides an accurate fit to the
numerical results with the best-fit values "0 ¼ �0:75 eV (top
curve) and "0 ¼ 1:3 eV (bottom curve). System of size 48� 82
was used for simulation, each data point was averaged over 20
realizations of randomly generated adatom configurations. Inset:
Attracting adatoms tend to aggregate. Phase diagram obtained
from the free energy (19) is shown.
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per carbon atom (see Fig. 1), where n is the fraction of
hydrogenated carbon atoms. The prefactor in (1) may have
a weak logarithmic dependence on n [see Eqs. (11) and
(18)].

We emphasize that the interaction energy in this case
cannot be treated as a sum of pairwise two-particle inter-
actions (indeed, summing 1=r interactions over the entire
space would give a divergence). The situation resembles
that of Casimir forces, which are of an essentially non-
pairwise nature. To treat the interaction mediated by elec-
trons one must account for the change in electronic states at

the energies " & @v0n
1=2, resulting from electron scatter-

ing on the adatoms (v0 is the electron Fermi velocity). This
leads to interaction energy per adatom of order @v0=r, with

r ¼ n�1=2 the typical distance between adatoms, in agree-

ment with n3=2 scaling, Eq. (1).
Attraction can lead to instability of a homogeneous

phase and adatom aggregation. Characteristic time scales
for such processes are controlled by the rates of adsorption
and desorption, or diffusion, whichever is faster. Compres-
sion of the graphene lattice, resulting from attraction be-
tween adatoms, may explain the observed reduction of the
lattice constant [5].

Interaction between hydrogen adatoms could also result
from corrugation of the graphene sheet caused by the stress
around tetrahedral sp3 bonds. Numerical evidence sug-
gests, however, that such corrugation is limited to the range
of at most a few lattice constants [8], rendering this type of
interaction effectively short ranged.

The problem of electrons scattering on impurities can be
described by a tight-binding Hamiltonian

H¼X
k

ðtkc y
k;Ac k;BþH:c:Þþ X

x;�¼A;B

u�ðxÞc y
x;�c x;�:

(2)

Here uAðBÞðxÞ is adatoms’ potential on sublattices A(B),
and tk¼ t0ð1þe�ike1 þe�ike2Þ, with t0 � 3:1 eV the hop-
ping amplitude and e1ð2Þ the basis vectors [see Fig. 2(b)].

The interaction between adatoms can be conveniently
analyzed in the Matsubara Greens function framework
using the thermodynamical potential � ¼ T

P
"n
Tr lnG

[20]. For two adatoms, we write G�1 ¼ G�1
0 � V1ðx�

x1Þ � V2ðx� x2Þ. Resumming the perturbation series in
terms of the T matrices of each adatom, we obtain

� ¼ �T
X
"n

Tr lnð1� T1G12T2G21Þ: (3)

Here G12 is the free-particle Greens function in position
representation, evaluated between the points x1 and x2

(similar representation was used recently in a study of
Casimir forces [21,22]).

In this Letter we shall use the s-wave resonant scattering
approximation,

T0ði"Þ ¼ �v2
0

i" lnðW=j"jÞ þ �
; j�j � W � 3t0; (4)

as appropriate for short-range scatterers at low energies.

HereW is the electron half-bandwidth, and the parameter �
describes detuning of resonance from the Dirac point. An
expression of this form can be obtained for a delta-function
potential, uðxÞ ¼ V�ðx� x1Þ, in which case the T matrix
is given by Tð"Þ ¼ V=ð1þ V

�v2
0

i" lnW
j"jÞ [9–11]. For hydro-

gen adsorbed on graphene, the presence of a resonance
peak close to the Dirac point, Eq. (4), was confirmed by
first-principles calculations [6].
The real-space Greens function can be written as

Gði"; rÞ ¼ �
Z d2k

ð2�Þ2
eikr

"2 þ jtkj2
i" tk
t�k i"

� �
; (5)

where the matrix accounts for the A and B sublattices. The
Greens function takes on different form for the end points
on different sublattices:

Gði"; rÞ ¼ GAA GAB

GBA GBB

� �
: (6)

In the low-energy approximation we expand tk in the
vicinity of points K, K0 ¼ �K to obtain tk � v0ð�px �
ipyÞ, where p ¼ k�K is the momentum relative to theK

(K0) point, and v0 ¼ 3
2 t0 is the Fermi velocity. Adding

contributions of the states near K and K0, we obtain

GAA ¼ GBB ¼ � i" cosðKrÞ
�v2

0

K0ð"~rÞ; ~r ¼ r

v0

; (7)

GAB ¼ � " sinðKrþ�Þ
�v2

0

K1ð"~rÞ; (8)

where � is the angle between r and K [see Fig. 2(a)], and
K0;1 denote modified Bessel functions of the second kind,

K�ðzÞ ¼ �ð�þ1
2Þ2�ffiffiffi

�
p

z�

R1
0

cosztdt
ð1þt2Þ�þ1=2 . The function GBA can be

obtained from the relation GBAðrÞ ¼ G�
ABð�rÞ, giving

GBA ¼ � " sinðKr��Þ
�v2

0

K1ð"~rÞ: (9)

We first consider two adatoms on different sublattices [see
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FIG. 2 (color online). Electron-mediated interaction between
adatoms depends on the type of sublattice: atoms on different
sublattices, A and B, attract (a), whereas atoms on the same
sublattice repel (b) [see Eqs. (11) and (13)]. The interaction is
modulated by a prefactor which takes different values on the
three sub-sublattices marked by 2, 20 and 200: (a) jsinðKrþ
�Þj¼ jsin�j;jsinð�þ 2�

3 Þj;jsinð�� 2�
3 Þj; (b) cos2ðKrÞ¼1, 14 ,

1
4 .

The modulation results from interference between electronic
states in valleys K and K0.
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Fig. 2(a)]. At distances r & @v0=T, approximating the sum
in � ¼ �T

P
"n
ln½1� T2

0ði"nÞG2
ABði"n; rÞ� by an integralR

d"
2� , and using Eq. (8), we find

UABðrÞ¼�
Z d"

2�
log

�
1�"2sin2ðKrþ�ÞK2

1ð"~rÞ
½i"logðW="Þþ��2

�
: (10)

This result further simplifies for relatively short distances
r & @v0=�. The integral can be evaluated using the asymp-
totic formula K1ðx � 1Þ � 1=x and replacing lnðW="Þ by
lnðrW=@v0Þ with logarithmic accuracy. Setting � ¼ 0 and
using the identity

R1
0 dx lnð1þ u=x2Þ ¼ �

ffiffiffi
u

p
we integrate

over " to obtain

UABð~a & r � @v0=�Þ � � @v0j sinðKrþ�Þj
r logðr=~aÞ ; (11)

where ~a ¼ @v0=W. The interaction has a negative sign,
corresponding to attraction of adatoms.

Interestingly, due to the factor j sinðKrþ�Þj in the
above expression, the interaction oscillates on the lattice
scale. This oscillation results from interference of the
contributions due to fermions from K and K0 valleys.

The meaning of the factor j sinðKrþ�Þj can be seen
more clearly by considering it separately on each of the

three sub-sublattices, which have period
ffiffiffi
3

p
times the

period of the A or B sublattice [see Fig. 2(a)]. Since eiKr

takes values 1, e2�i=3, and e4�i=3, the same on each of the
three sub-sublattices, the angular dependence in Eq. (11) is
given by j sinð�Þj, j sinð�þ 2�=3Þj, or j sinð�þ 4�=3Þj
in each of the three cases.

For adatoms residing on the same sublattice (A or B), the
interaction is � ¼ �T

P
"n
lnð1� ½T0ði"nÞGAAði"n; rÞ�2Þ,

giving

UAAðrÞ ¼ �
Z d"

2�
ln

�
1þ "2cos2ðKrÞK2

0ð"~rÞ
½i" lnðW="Þ þ ��2

�
: (12)

We note a different sign under the log in this expression as
compared to Eq. (10), which arises because GAA is imagi-
nary valued, whereas GAB is real valued. The integral over
" is dominated by the region � & j"j & v0=r, since K0ðxÞ
decreases exponentially for x * 1. For such ", and for
lnðWr=v0Þ 	 1, the ratio K0ð"~rÞ= lnðW="Þ is small in
most of the integration domain [K0ðx � 1Þ � � logx].
Thus we can Taylor-expand the log and, with logarithmic
accuracy, integrate over " using the identity

R1
0 K2

0ðxÞdx ¼
�2=4, to obtain

UAAð~a & r � @v0=�Þ � �@v0

4rlog2ðr=~aÞ cos
2ðKrÞ: (13)

The factor cos2ðKrÞ in Eq. (13), describing interference
between two valleys, takes constant value on each of the

three sub-sublattices with period
ffiffiffi
3

p
[see Fig. 2(b)].

Analyzing it as above we find that cos2ðKrÞ ¼ 1 for ada-
toms residing on the same sub-sublattice, and cos2ðKrÞ ¼
1=4 when adatoms reside on different sub-sublattices.

The energy of interaction for adatoms on the same
sublattice, Eq. (13), is positive, which means that in this

case adatoms repel each other. This repulsion is logarithmi-
cally weaker than the attraction found for atoms on differ-
ent sublattices, Eq. (11). We thus expect the net interaction
for a system of many adatoms randomly placed on both
sublattices to be dominated by attraction. These conclu-
sions remain essentially unchanged after taking into ac-
count a nonzero � (see Fig. 3).
The repulsion (13) will be greatest for the next-nearest

carbon atoms. Interestingly, in an STM experiment [23] it
was found that chemisorbed hydrogen atoms can reside on
the nearest or next-next-nearest sites of the carbon lattice,
but never on the next-nearest sites. This behavior is con-
sistent with our results, Eqs. (13) and (11).
Next, we analyze interaction in a system of adatoms at a

finite concentration. Since electronic states with wave-

lengths exceeding the distance between adatoms, � * d ¼
n�1=2, are strongly perturbed by scattering, this interaction
is of nonpairwise character. For relatively high densities,
n > �2=@2v2

0, the interaction can be estimated using the

results for � ¼ 0. This gives an energy of about @v0=d per

adatom, leading to the n3=2 scaling for the energy density
vs adatom concentration, Eq. (1).
This behavior was confirmed by numerical analysis of

the tight-binding problem (2), whereby adatoms were mod-
eled by a local potential taking values exceeding t0. Given
a random configuration of N adatoms, we diagonalize the
Hamiltonian and sum all negative eigenvalues to evaluate
the total energy, EðNÞ ¼ P

"�<0"�. The dependence on N

is dominated by a contribution linear in N, EðNÞ ¼ E0 þ
A0N þ A1N

3=2. Subtracting the linear part A0N, which cor-
responds to a chemical potential of an adatom, we recover

the interaction �EðNÞ / N3=2 (see Fig. 1). Alternatively,
one can choose to evaluate EðNÞ as a sum over the lower
half of the spectrum. This changes somewhat the linear

term, leaving the N3=2 contribution essentially the same.
The sign of interaction is that of attraction when adatoms

are evenly spread over both sublattices. In this case, the
best-fit value of the prefactor in the scaling relation (1) is
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FIG. 3 (color online). The interaction (10) and (12) for zero
and nonzero energy � of the adatom resonance, Eq. (4). The
interaction retains the 1=r form at distances r & @v0=�, decreas-
ing more rapidly at larger r. When the system is doped away
from neutrality, similar behavior is expected at distances shorter
than the Fermi wavelength, r & �F.
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found to be "0 � 0:42t0. With t0 ¼ 3:1 eV this gives "0 �
1:3 eV. In contrast, when all adatoms are placed on one
sublattice, a repulsive interaction is found, "0 �
�0:24t0 ¼ �0:75 eV. This is in agreement with the signs
of pairwise interaction discussed above.

To test these numerical results against an analytic ap-
proach, we use disorder-averaged Greens functions found
in a self-consistent mean-field approximation, in which
pointlike adatoms are replaced by a constant field:

~G�1ði";kÞ¼ i~" �tk�t�k i~"

� �
; i~"¼ i"��v2

0n1
i~"lnW

j~"j
; (14)

where n1 ¼ 2n=33=2a2 is adatoms’ density per sublattice,

a ¼ 1:42 �A is carbon spacing. Solving the self-consistency
condition (14) with logarithmic accuracy, we find

~" ¼ "

2
þ sgn"

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"2

4
þ �2

s
; �2 ln

W

�
¼ �v2

0n1: (15)

The energy density of the system can be written as

E ¼
I dz

2�i
z
X
�

1

z� "�
¼

Z 1

�1
d"

2�
i"TrGði"Þ; (16)

where "� is the spectrum, and the contour integral is taken
over the imaginary axis and a half-circle at infinity. The
trace of G is identical to that in the self-energy of a T
matrix, giving TrGði"Þ ¼ �2i~" lnðW=j~"jÞ=�v2

0. Subtract-

ing the contribution due to free Dirac fermions, we obtain
the change in total energy due to adatoms,

Eint ¼
Z 1

�1
d"

ð�vÞ2 "
�
~" ln

W

j~"j � " ln
W

j"j
�
: (17)

The function under the integral is even, positive, and
approximately constant at j"j * �, taking on a value pro-
portional to n (with logarithmic corrections). At 0< " &
� the function is increasing from zero to the asymptotic
value at large ". This behavior is in agreement with ex-
pectation of a leading contribution �E / n and a negative

n3=2 part describing interaction. Subtracting the part that is
linear in n, and dividing by the density of carbon atoms n0,
we find the interaction energy

�Eint ¼ � 8�3

3�2v2
0n0

�
ln
W

�
� 2

3

�
; n0 ¼ 4

33=2a2
; (18)

per carbon atom. This formula agrees very well with our
numerical results [see red (medium gray) curve in Fig. 1].

A long-range attraction between adatoms can drive
thermodynamic instability. This can be seen most easily
from a phase diagram, obtained from the free energy F ¼
EðnÞ � TSðnÞ (see Fig. 1 inset). In our case,

F ¼ �"0n
3=2 þ T½n lnnþ ð1� nÞ lnð1� nÞ�; (19)

giving the critical temperature T� ¼ "0=2
ffiffiffi
3

p � 4200 K.
Since temperature during hydrogenation is substantially
below T� [5], the adatoms are expected to self-organize
into high and low-density droplets.

Even if spatial diffusion of hydrogen is slow, as may be
the case in [5], initial stages of self-organization terminated
by freezing in a low-temperature state would result in
macroscopic inhomogeneities. Such inhomogeneities of
the hydrogenated state were indeed observed in the TEM
diffraction images described in Ref. [5]. It was also noted
that dehydrogenation restores homogeneity, pointing to an
intrinsic character of this effect.
The attraction between ‘‘frozen’’ adatoms would create

a lateral stress. Treating the occupancy n as strain inde-
pendent, we have

� ¼ �@EðnÞ=@ lnV � 1

2
j"0jn3=2; (20)

where an empirical relation @t0=@a � �t0=a is used to
describe the change in t0. Such stress would lead to com-
pression of the graphene matrix. This is consistent with the
reduction in lattice period upon hydrogenation observed in
experiment [5].
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