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We obtain several clustering properties of the Jain states at filling k
2kþ1 : they are a product of a

Vandermonde determinant and a bosonic polynomial at filling k
kþ1 which vanishes when kþ 1 particles

cluster together. We show that all Jain states satisfy a ‘‘squeezing rule’’ which severely reduces the

dimension of the Hilbert space necessary to generate them. We compute the topological entanglement

spectrum of the Jain � ¼ 2
5 state and compare it to both the Coulomb ground state and the nonunitary

Gaffnian state. All three states have a very similar ‘‘low-energy’’ structure. However, the Jain state

entanglement ‘‘edge’’ state counting matches both the Coulomb counting as well as two decoupled Uð1Þ
free bosons, whereas the Gaffnian edge counting misses some of the edge states of the Coulomb spectrum.
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The experimentally observed fractional quantum Hall
(FQH) states in the lowest Landau level (LLL) are thought
to be described by Laughlin [1] and hierarchy states mod-
eled by Jain’s composite fermion wave functions [2]. Jain’s
states have dramatically large overlap with the true
Coulomb ground states, but the process of flux attachment
and projection to the LLL renders them hard to analyze
(Monte Carlo methods have been devised [3] for treating
variants of the Jain states where the projection to the LLL
is modified, or simply omitted).

The decomposition of Jain’s model states into Slater
determinants has not been obtained for N > 10 particles
[4], and (unlike the Laughlin states) they have not been
characterized as unique ground states of some model
Hamiltonian. Moreover, their observed large overlap with
the ground states of LLL systems with realistic Coulomb
interactions is only empirically understood; this has be-
come most evident recently, when other states, with iden-
tical filling (and ‘‘shift’’) [5,6], as the Jain states, but
exhibiting different topological order, have been found to
have competitive overlaps with the true Coulomb ground
states [7]. Although some of these new states are conjec-
tured to represent gapless critical points [8,9], their large
overlap with the Jain states (thought to be gapped in their
interior) underscores the need to better understand FQH
states from a theoretical standpoint.

In this Letter we describe a previously unrecognized
‘‘clustering property’’ of the Jain states which allows
them to be (partially) characterized as zero modes of
certain pseudopotential Hamiltonians. However (unlike
the Laughlin states), they are not unique maximum-density
zero modes; while the zero-mode property is insufficient to
completely determine the structure of Jain’s wave func-
tions, it provides a powerful constraint that enables their
numerical construction at significantly larger N. The key
technical advance reported here is the identification of the
structure of Jain states as ‘‘squeezed polynomials’’: they
contain only many-body free-particle configurations ob-

tainable from a ‘‘root’’ configuration by a two-body opera-
tion called ‘‘squeezing,’’ defined below. This drastically
reduces their Hilbert space dimension.
Armed with this technique, we then investigate the

topological entanglement spectrum [10] of the first state
in the hierarchy, the � ¼ 2=5 Jain state for up to N ¼ 16
particles, and compare it with both the Coulomb ground
state and the so-called Gaffnian state, related to a nonuni-
tary conformal field theory (CFT) [9], which has a Jack
polynomial description [6]. We find a virtually identical
‘‘low-energy’’ structure in the Schmidt spectral decompo-
sition of these three states. Although the Gaffnian state is
very close in both overlap and spectral decomposition to
Coulomb and Jain, we directly identify a major difference
between these states—the ‘‘edge’’ mode structure of the
Coulomb entanglement spectrum—and show that it
matches the Jain state edge structure as well as that of
twoUð1Þ free bosons. We can, however, make no definitive
statement on whether the nonunitary Gaffnian state is
gapped or gapless [8].
Any fermionic state in the LLL can be written as a

product of a Vandermonde determinant and a symmetric
polynomial; we first focus on the bosonic variants of model
FQH states which omit the Vandermonde factor. We rep-
resent an angular momentum partition � with length l� �
N as a (bosonic) occupation-number configuration nð�Þ ¼
fnmð�Þ; m ¼ 0; 1; 2; . . .g of each of the LLL orbitals

�mðzÞ ¼ ð2�m!2mÞ�1=2zm expð�jzj2=4Þ with angular mo-
mentum Lz ¼ m@. nmð�Þ is the multiplicity of m in �. It is
useful to identify the ‘‘dominance rule’’ [11] (a partial
ordering of partitions � >�) with the ‘‘squeezing rule’’
[12] that connects configurations nð�Þ ! nð�Þ: squeezing
is a two-particle operation that moves a particle from
orbital m1 to m0

1 and another from m2 to m0
2, where m1 <

m0
1 � m0

2 <m2, and m1 þm2 ¼ m0
1 þm0

2; � >� if nð�Þ
can be derived from nð�Þ by a sequence of squeezings. An
interacting LLL polynomial P� indexed by a root partition
� is defined as a squeezed polynomial if it can be expanded
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in occupation-number noninteracting states (monomials
m�) of orbital occupations nð�Þ obtained by squeezing

on the root occupation nð�Þ: P� ¼ m� þP
�<�v��m�.

The v�� are rational number coefficients. Partitions �

can be classified by �1, their largest part. When any P�

is expanded in monomials m�, no orbital with m> �1 is

occupied. P� can be interpreted as states on a sphere
surrounding a monopole with charge N� ¼ �1 [13]. A
large number of FQH states (such as the Zk Read-Rezayi
sequence [14]) are squeezed polynomials [6].

The root configuration of a squeezed polynomial nð�Þ
has the largest variance: �� ¼ PN

i;j¼1ð�i � �jÞ2 of all the
partitions � � �. A generic state, such as the ground state
of the Coulomb Hamiltonian in the LLL at some arbitrary
filling, has nonzero weight on all many-body noninteract-
ing states squeezed from the maximum possible variance
nð�Generic StateÞ ¼ ½N2 00 . . . 00 N

2�, and hence in this case the

squeezing property is neither meaningful nor useful.
However, for most ‘‘model’’ FQH states, the existence of
a root configuration drastically reduces the Hilbert space
necessary for generating the state and implies many other
special properties of the state.

We now find the root configuration for all bosonic Jain
states at filling k=ðkþ 1Þ, defined as the usual composite
fermion states at filling k=ð2kþ 1Þ divided by a
Vandermonde determinant. We start with the simplest of
these states, the � ¼ 2=3 state, defined by placing N=2
quasiparticles in the Laughlin 1=2 state and implemented
by Jain’s operator for t number of quasiparticles [2]:

c J
tqp ¼ Det

@1 � � � @N
..
. � � � ..

.

zt�1
1 @1 � � � zt�1

N @N
1 � � � 1
..
. � � � ..

.

zN�t�1
1 � � � zN�t�1

N

0

BBBBBBBBBB@

1

CCCCCCCCCCA

YN

i<j

ðzi � zjÞ: (1)

The single flux attachment Vandermonde factor
Q

N
i<jðzi �

zjÞ is a single Slater determinant of fermionic root con-

figuration nð�0Þ ¼ ½111 . . . 111� or �0 ¼ ðN � 1; N �
2; N � 3; N � 4; . . . ; 6; 5; 4; 3; 2; 1; 0Þ; one immediately
recognizes in �0 the powers (angular momentum) of the
zi in the Slater determinant. The determinant operator in
Eq. (1), however, has derivative terms, which we denote by
@=@z ¼ �1; its root partition in angular momentum basis
is �Det ¼ ðN � t� 1; N � t� 1; . . . ; 4; 4; 3; 3; 2; 2; 1; 1; 0;
0;�1Þ. There are two states at each angular momentum
in �Det because both z

m and zmþ1@=@z operators contained
in the determinant have the same angular momentum m.
Since the determinant operator now acts on the
Vandermonde determinant �0, we could immediately add
the two angular momentum partitions, but doing this
blindly would cause a problem: the resulting partition �,
as it describes a polynomial wave function c tqp, must have

all its components positive (the final polynomial must be

analytic in z’s). As such, the last component of �Det cannot
add to the last component of �0; adding these two together
would correspond to taking the partial derivative �1 !
@=@z of a constant 0 ! z0, and the result would vanish. As
such, the next maximum variance angular momentum
partition one can build is �¼ðN�1;N�2;N�3;N�
4; . . .4;3;2;1;0ÞþðN� t�1;N� t�1; . . . ;4;4;3;3;2;2;1;1;
0;�1;0Þ¼ ð. . .14;13;11;10;8;7;5;4;2;0;0Þ, where we
have written only the angular momentum close to the
north pole in the final partition. When written in oc-
cupation number, the root configuration is nð�Þ ¼
½201011011011011011 . . .�. Creating an ~L ¼ 0 state
requires that the north pole be identical to the
south pole, and hence the root configuration number
for the � ¼ 2=3 state reads nð��¼2=3Þ ¼
½201011011011 . . . 0110110110102�. The bulk occupa-
tion configuration contains 2 particles in 3 orbitals (110),
as expected for a � ¼ 2=3 state. For the fermionic
state at � ¼ 2=5, c �¼2=5 ¼ c �¼2=3

Q
N
i<jðzi � zjÞ;

the root occupation number reads nð��¼2=5Þ ¼
½11001001010010100101 . . . 10100101001010010011�. A
similar procedure, starting from the appropriate projection
operators in the first k Landau level (LL), allows us to
obtain the root occupation number for all Jain states at
filling k=ðkþ 1Þ, with the result given in Fig. 1.
The root configuration presented in Fig. 1 for general k

allows us to determine part of the Hamiltonian for which
the Jain states are exact zero modes. Let k particles cluster
at one point, which, by translational invariance, we pick to
be the origin. Because all the monomials included in the
Jain state are squeezed from nð��¼k=ðkþ1ÞÞ, placing k par-

ticles at the origin results in monomials squeezed from
½0010120130 . . .1k�101k01k . . . 1k01k01k�1 . . .013012010k�.
These monomials are �Q

N
i¼kþ1 z

2
i , and hence the full

polynomial vanishes when a zkþ1 ! 0; since the origin is
not special by translational invariance, we have

FIG. 1 (color online). Root partition in angular momentum
basis for � ¼ 2

3 ;
3
4 ;

4
5 . . .

k
kþ1 states can be written as the sum of

the Vandermonde determinant partition plus the maximum root
partition of the determinant operator of k LL projected to the
LLL. The root occupation configuration contains k particles in
kþ 1 orbitals ½1k0� when deep in the bulk. Close to the north and
south pole there are deviations from this rule.
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c J
�¼k=kþ1ðz1¼Z; . . . ;zk¼Z;zkþ1; . . . ;zNÞ�

YN

i¼kþ1

ðZ�ziÞ2:

c J
�¼k=ðkþ1Þ are zero modes of the pseudopotential V0

kþ1,

which eliminates the ~L ¼ 0 state of a kþ 1-body cluster.
Unfortunately, the above Hamiltonian and root partition

do not uniquely define the Jain states. Imposing the ~L ¼ 0
condition on the squeezed polynomial with the Jain root
partition nð��¼k=ðkþ1ÞÞ results in a conjectured E½ðN þ
2Þ=4� linearly independent ~L ¼ 0 polynomials (where
E½x� is the integer part of x). We pick the simplest state
at bosonic � ¼ 2=3 or fermionic � ¼ 2=5 to analyze fur-
ther. From now on, we return to the fermionic state. We
reduced the problem of determining the order N! Slater
determinants in the decomposition of a Jain state to that of
determining E½ðN þ 2Þ=4� constants. While the usual
Monte Carlo integration procedures would fail to accu-
rately compute the full decomposition, they may be used to
determine the components of the Jain state on this reduced
basis. With this method, we are able to obtain the Jain state
for up to N ¼ 16 particles on the sphere geometry (the
dimension of the squeezed Hilbert space is 99 608 768,
compared to the original full size 155 484 150) with
0.9999 accuracy; the previous largest size was N ¼ 10
particles [4].

We also constructed the nonunitary Gaffnian state [9] for
N ¼ 16 particles (squeezed Hilbert space dimension ¼
91 736 995), uniquely defined as the ~L ¼ 0 squeezed poly-
nomial with bosonic root occupation nð�Jack �¼2=3Þ ¼
½2002002002 . . . 2002002� [6] multiplied by a
Vandermonde determinant. In Fig. 3 we show the overlap
of both the Gaffnian and the Jain state with the ground state
of Coulomb plus delta function �V1 interaction obtained
by exact diagonalization (the large overlap of the Coulomb
state with the Gaffnian for up to N ¼ 12 particles was
previously noted in [9]). The overlap is above 95% for
both states for �V1 >�0:06. There is a phase transition at
�V1 � �0:08.

In order to better understand the remarkably large over-
lap, topological order, and the differences between the Jain
and Gaffnian ground state, we compute their topological
entanglement spectrum. On the sphere (they have identical
filling and shift), we cut the state into two hemisphere
blocks A and B. Following [10], we introduce the entan-
glement spectrum � as �i ¼ expð��iÞ, where �i are the
eigenvalues of the reduced density matrix �A of one hemi-
sphere. The eigenvalues can be classified by the number of
fermions NA in the A block, and also by the total angular

momentum LðAÞ
z of the A block. In a topological state, the

low-lying spectrum �i of the reduced density matrix for

fixed NA, plotted as a function of LðAÞ
z , should display a

structure reflecting the CFT describing the edge physics
and should be separated by a gap from a higher ‘‘non-
CFT’’ part of the spectrum. In Fig. 2, this CFT spectrum is
defined as every � below the horizontal line at � � 8
(below the light blue line). This was shown to be the

case for the � ¼ 5=2 state [10] as well as for the
Laughlin � ¼ 1=3 state [15]. In our case, � ¼ 2=5, the
entanglement gap is not extremely apparent. The three
states, Gaffnian, Jain, and Coulomb, have the same low-
energy entanglement structure as can be seen in Fig. 2. The
counting of entanglement eigenvalues for the Gaffnian at a

certain angular momentum LðAÞ
z is seen to correspond to the

counting of occupation-number configurations of angular

momentum LðAÞ
z satisfying the generalized Pauli principle

[6] of not more than 2 particles in 5 consecutive orbitals
and, by virtue of being fermions, not more than 1 particle in
each orbital. The counting of edge modes reads
1,1,3,5,10. . ., the same as that obtained by different meth-
ods in [16]. The Jain state has a very similar ‘‘low-energy’’
entanglement structure with the Gaffnian state, but also
exhibits extra higher energy levels not present in the
Gaffnian. We remark that the Jain state, not being a pure
CFT state (i.e., not obtained as a correlator of CFT primary
fields, but rather of their derivatives [17]), has an entangle-
ment gap of its own. Some of the spectral levels present in
the Jain entanglement spectrum are nongeneric and should
become clearly gapped in the thermodynamic limit. (E.g.,

at LðAÞ
z ¼ 80 the entanglement spectrum is formed by one

low-lying eigenvalue and other high-energy ones with very
little weight in the Jain state. The difference between these
values seems to define an entanglement gap for the Jain
state itself.) The presence of an entanglement gap in the
Jain state differentiates it from ‘‘pure’’ CFT states, and
makes the counting of the edge-state spectrum difficult. To
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FIG. 2 (color online). Top: Topological entanglement of the
pure Coulomb at � ¼ 2

5 . The levels below the light blue line at

� � 8 are almost identical to the Gaffnian levels, whereas the
levels below the green line are almost identical to those of the
Jain state, to within 0.003%–3%. Middle: Topological entangle-
ment spectrum of the Gaffnian state. Bottom: Topological en-
tanglement spectrum of the N ¼ 16, � ¼ 2=5, Jain state. The
low-energy structure of the Jain state (in blue at � � 8) is almost
identical to that of the Gaffnian (below the blue line).
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proceed, we count only the eigenvalues of the Jain state
that match the eigenvalues of the Coulomb spectrum (be-
low the horizontal green line at � � 10 in Fig. 2). This
should provide us with the ‘‘universal’’ counting of edge
states for a finite size system. As seen in Fig. 2, this

counting is 1:2:5 for �L ¼ 0, 1, 2 units away from LðAÞ
z ¼

80. This matches the counting of two Uð1Þ free bosons as
predicted by the hierarchy construction.

The Coulomb state follows most of the low-energy
eigenvalues of the Gaffnian (up to � ¼ 8) and Jain state
(up to � ¼ 10). While two states that have almost identical
spectral decomposition necessarily have large overlap, the
converse is not true, as large overlap can be accidental. The
almost identical low-energy spectral decompositions indi-
cate that the large overlap is not accidental, which is
puzzling as the Gaffnian and Jain states represent different
states of matter. As in [10], we denote the gap between the

lowest two �i, at the LðAÞ
z value where the highest-LðAÞ

z

member of the CFT spectrum occurs, as �0. In Fig. 3,

this is the gap between the lowest two states at LðAÞ
z ¼

80. We define the quantities �1 as the gaps at LðAÞ
z ¼ 79

values between the values of the �i’s for the CFT state and
the next Coulomb value. As noted previously, the Jain state

has its own entanglement gap, equal at LðAÞ
z with the

difference between the lowest �i � 6 and the next one at
�i � 13:5. We study the evolution of the entanglement

gaps �0;1 as we tune the interaction across a phase tran-

sition. In Fig. 3, we plot �0 as a function of the pseudo-
potential �V1 for the � ¼ 2=5 case, which shows a
dramatic decrease of the ‘‘entanglement gap’’ around the
region of the phase transition. For values of �V1 < 0:08 the
CFT-like structure of the entanglement spectrum is lost.
Entanglement gaps can also be computed in the two Uð1Þ
free boson sectors (see insets of Fig. 3). The gap at Lz ¼ 79
between the second Jain (green, below the � � 10 hori-
zontal line) eigenvalue and the next Coulomb (red, above
the � � 10 horizontal line) eigenvalue, �1, becomes neg-
ligible for values of �V1 larger than those involved in the
Gaffnian sector. We notice that for N ¼ 12, this is corre-
lated to the first excited state having its angular momentum
changing from L ¼ 6 to L ¼ 2 (around �V1 ¼ �0:06).
In conclusion, we showed that the Jain states at � ¼

k=ð2kþ 1Þ are zero modes (but not highest density) of a
kþ 1-body pseudopotential and exhibit a Hilbert space
size reducing squeezing property. We analyzed the entan-
glement spectrum of the Jain, Coulomb, and nonunitary
Gaffnian states at � ¼ 2=5 and found a similar low-energy
structure which proves their large overlap is not accidental;
still, the Jain state contains some physical low-energy
levels not present in the Gaffnian.
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FIG. 3 (color online). Red plots [starting at �0 � 1 in (a) and
�1 � 0:5 in (b)]: Entanglement gap of the Coulomb state for

LðAÞ
z ¼ 80 (a), LðAÞ

z ¼ 79 (b) as a function of added hard-core
potential. The entanglement gap is discontinuous (a, b) at similar
values of �V1 for which the overlap of the Gaffnian and Jain with
the Coulomb ground state collapses [see inset (a): overlaps of
both Gaffnian and Jain states with the Coulomb ground state as a
function of added hard-core interaction �V1 for N ¼ 16 parti-
cles]. A phase transition occurs close to �V1 ’ �0:08.] The red
dashed line is the entanglement gap for the Jain state. Green
plots [starting at �0 � 3 in (a) and �1 � 1 in (b)]: Overlap of

the reduced density matrix eigenstates for each of the LðAÞ
z ¼ 80,

79 between Coulomb and Gaffnian. The green dashed line is the
calculation result between Jain and Gaffnian. Inset (b): Similar
results in the two Uð1Þ free boson sector.
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