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We develop a tight-binding model description of semi-Dirac electronic spectra, with highly anisotropic

dispersion around point Fermi surfaces, recently discovered in electronic structure calculations of

VO2-TiO2 nanoheterostructures. We contrast their spectral properties with the well-known Dirac points

on the honeycomb lattice relevant to graphene layers and the spectra of bands touching each other in zero-

gap semiconductors. We also consider the lowest order dispersion around one of the semi-Dirac points and

calculate the resulting electronic energy levels in an external magnetic field. In spite of apparently similar

electronic structures, Dirac and semi-Dirac systems support diverse low-energy physics.
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The ability to prepare graphene (single graphite sheets)
[1] has spurred the study of electronic behavior of this
unique system, in which a pair of Dirac points occur at the
edge of the Brillouin Zone [2]. Bands extend linearly
(referred to as ‘‘massless Dirac’’) both to lower and higher
energy from point Fermi surfaces. This unusual behavior
requires special symmetry and nonbonding bands. In bi-
layer graphene [3], the linearly dispersing bands become
quadratic, while retaining many of the symmetry proper-
ties. Spin-orbit coupling in these systems should lead to a
gapped insulator in the bulk. Gapless modes remain at the
edge of the system, protected by topological properties and
time-reversal symmetry. This new state of matter, insulat-
ing in the bulk and metallic at the edges, has been called a
topological insulator [4,5].

Point Fermi surfaces also arise in gapless semicon-
ductors in which the bands extend quadratically
(‘‘massively’’) from a single point separating valence and
conduction bands [6]. However, these systems are, ge-
nerically, not topological insulators. It has been argued
that in HgTe quantum wells, where s and p bands overlap
each other at the � point as a function of well thickness,
Dirac-like spectra can also arise with exotic topological
properties. Because of the enhanced spin-orbit coupling in
these materials, a state of matter exhibiting quantum spin
Hall effect, has been predicted [7] and observed [8].

Recent developments in the synthesis of controlled
nanostructures, heterojunctions and interfaces of transition
metal oxides represent one of the most promising areas of
research in materials physics. While several recent studies
of oxide interfaces have focused on the polarity disconti-
nuity that can give rise to unexpected states between
insulating bulk oxides, including conductivity [9,10], mag-
netism [11], orbital order [12], even superconductivity
[13], unanticipated behavior unrelated to polarity can
also arise. The VO2-TiO2 interface involves no polar dis-
continuity, but only an open-shell charge and local mag-

netic discontinuity, according to the change d1 $ d0

across the interface.
It was recently discovered [14] that a three unit cell slab

of VO2 confined within insulating TiO2 possesses a unique
band structure. It shows four symmetry related point Fermi
surfaces along the (1,1) directions in the 2D Brillouin zone,
in this respect appearing to be an analog to graphene. The
dispersion away from this point is however different and
unanticipated: a gap opens linearly along the symmetry
line, but opens quadratically along the perpendicular di-
rection. The descriptive picture is that the associated (elec-
tron or hole) quasiparticles are relativistic along the
diagonal with an associated ‘‘speed of light’’ vF, as they
are in graphene in both directions, but they are nonrelativ-
istic in the perpendicular direction, with an effective mass
m. Seemingly, the laws of physics (energy vs momentum)
are different along the two principal axes. The situation is
neither conventional zero-gap semiconductor-like, nor
graphene-like, but has in some sense aspects of both.
This kind of spectra was found to be robust under modest
changes in the structure.
Here, we develop a tight-binding model description

of this semi-Dirac spectra. We find that a three-band
model is needed, which can be downfolded to two bands
at low energies. A variant of the model, with only two
bands, gives rise to anisotropic Dirac spectra, where one
has linearly dispersing modes around point Fermi sur-
faces, with very different ‘‘speed of light’’ along two
perpendicular axes. A common feature of the various
systems discussed above are point Fermi surfaces. From
a device point of view, for example, in thinking of p-n or
p-n-p junctions, these systems may share common
qualitative features. The actual dispersion, which would
give rise to different density of states, may control
more quantitative differences. However, a more fundamen-
tal difference may be in their topological properties [5,15–
17].
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We begin with a 3-band tight-binding model of spinless
fermions [corresponding to the half-metallic VO2 trilayer
although the system could also be nonmagnetic (spin de-
generate)], on a square-lattice, defined by the Hamiltonian

H ¼ X3
�¼1

�X
i

��ni;� þX
hi;ji

t�ðcyi;�cj;� þ H:c:Þ
�

þ �1

X
hii;�

ðcyi;1ci�x̂;3 � cyi;1ci�ŷ;3 þ H:c:Þ

þ �2

X
hii;�

ðcyi;2ci�x̂;3 � cyi;2ci�ŷ;3 þ H:c:Þ (1)

with �3 � �1, �2, so that we have two overlapping bands 1
and 2, with no coupling between them. Instead, they couple
through the third band, by a coupling which changes sign
under rotation by 90�. Such a coupling can be shown to
arise by symmetry between d and s orbitals, for example.
The important aspect is that the coupling vanishes along
the symmetry line, allowing the bands to cross [they have
different symmetries along the (1,1) line]. Now, since the
third band is far from the Fermi energy, it can be taken as
dispersionless. Furthermore, without affecting any essen-
tial physics, we take t1 ¼ �t2 ¼ t and �1 ¼ �2 ¼ t0. Thus,
in momentum space, the Hamiltonian becomes a 3� 3
matrix:

H ¼
~"1k 0 Vk

0 ~"2k Vk

Vk Vk "3

0
@

1
A (2)

where the dispersions and coupling are given by

~"1k ¼ "1 þ 2tðcoskx þ coskyÞ
~"2k ¼ "2 � 2tðcoskx þ coskyÞ
Vk ¼ 2t0ðcoskx � coskyÞ:

Using the fact that orbital 3 is distant in energy, the
three-orbital problem can be downfolded to a renormalized
two orbital problem which becomes (neglecting a parallel
shift of the two remaining bands)
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The eigenvalues Ek� of H as given by

Ek� ¼ ~"1k þ ~"2k
2
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With some (not very stringent) restrictions on "1 � "2 to
ensure that the uncoupled bands actually overlap, the two

bands touch only at the point ~ksd along the (1,1) lines where
~"1k ¼ ~"2k; otherwise, the two bands lie on either side of the
touching point (the Fermi energy). When the 2� 2
Hamiltonian is expanded around the semi-Dirac point

~ksd, it becomes

H ¼ ~"1k
V2
k

"3
V2
k

"3
~"2k

0
@

1
A ! vFq2 q21=2m

q21=2m �vFq2

� �
(5)

where q2 and q1 denote the distance from ~ksd along the
(1,1) symmetry direction, and the orthogonal (1,�1), respec-
tively. The Fermi velocity vF and effective mass m can be
related explicitly to the tight-binding model parameters,
and also calculated by standard ab initio techniques. The
dispersion relation is that found for the three layer slab of
VO2 trilayer in TiO2 at low energy,

Eq� ! �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq21=2mÞ2 þ ðvFq2Þ2:

q
(6)

For comparison, the graphene dispersion relation is Eg
q� ¼

�vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q21 þ q22

q
. A plot of the low-energy dispersion of the

model giving rise to a semi-Dirac point in the 2D Brillouin
Zone is shown in Fig. 1. For the VO2 trilayer [14], this
dispersion holds up to 10–30 meV in the valence and
conduction bands.
A few observations can be made at this point. First, if the

original bands 1 and 2 were simply coupled by the same
anisotropic mixing Vk (without any third band in the
picture), then anisotropic Dirac points (rather than semi-
Dirac points) occur along the (1,1) directions. This disper-
sion is also shown in Fig. 1. This type of two-band situation
should not be particularly unusual; hence, Dirac points in
2D systems are probably not as unusual as supposed; i.e.,
they are not restricted to graphene nor are they restricted to
high symmetry points.
While the constant energy surfaces of our model may

appear to be elliptical (the common situation; the Dirac
point has circular FSs), they are actually quite distinct. As
E ! 0, the velocity is constant in one direction and isffiffiffiffiffiffiffiffiffiffi
2mE

p
in the other; the FSs vanish as needles with their

long axis perpendicular to the (1,1) direction. This can be

FIG. 1 (color online). On the left, the plot shows the low-
energy band eigenvalues Eq� in a region near EF for the semi-

Dirac point. On the right is the same plot for the anisotropic
Dirac point.
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seen in Fig. 2, showing the constant energy surfaces for
electron doping according to our model, showing the 4
semi-Dirac points in the tetragonal kx-ky Brillouin zone.

The density of states (DOS) n(E), which is constant for
effective mass systems and goes as jEj for graphene, is
proportional to

ffiffiffiffiffiffiffijEjp
at a semi-Dirac point. When doped,

the density of carriers will follow nðEFÞ / jEFj3=2
behavior.

Another observation is that the same bands Eq� can be

obtained from related but distinct low-energy models, such
as

H2 ¼ vFq2 iq21=2m
�iq21=2m �vFq2

� �
(7)

and

H3 ¼ 0 q21=2mþ ivFq2
q21=2m� ivFq2 0

� �
: (8)

Although the bands resulting from H2 and H3 are the
same, the eigenfunctions are different and are intrinsically
complex for H2 and H3 unlike for the specific semi-Dirac
point we discuss.

One of the issues of most interest to such systems is the
behavior in a magnetic field. Making the usual substitution

~q ! ~pþ e
c
~A with momentum operator ~p and vector po-

tential ~A, we find the Landau gauge ~A ¼ Bð�x2; 0; 0Þ to be
the most convenient here. First, however, we note that the
characteristics of the two directions, the mass m and ve-
locity vF, introduce a natural unit of momentum po ¼
mvF and length xo ¼ @=po, and of energy eo ¼ mv2

F=2.
Introducing the atomic unit of magnetic field Bo such that
�BBo ¼ 1 Ha, and the dimensionless field b ¼ B=Bo,

units can be scaled away from the Hamiltonian by defining
for each coordinate x

x2 ¼
�
1

�b

�
2=3

xo~x2; (9)

and similarly for x1. Here, � is the dimensionless ratio of
the two natural energy scales: � ¼ �BBo=ðmv2

F=2Þ. Under
this scaling,

p1 þ e

c
A1 ¼ p1 � e

c
Bx2 ! poð�bÞ2=3ð~p1 � ~x2Þ (10)

where ~p1, ~x1 are conjugate dimensionless variables, etc.
Thus all possible semi-Dirac points (all possible m and vF

combinations) scale to a single unique semi-Dirac point,
with the materials parameters determining only the overall
energy scale. There is no limiting case in which the semi-
Dirac point becomes either a Dirac point or a conventional
effective mass zero-gap semiconductor. For the case of
trilayer VO2, � does not differ greatly from unity [14].
Shifting ~x2 to u ¼ ~x2 � ~p1, with conjugate dimension-

less momentum p, the Hamiltonian in a field becomes

H ¼ 2eoð�bÞ2=3
�
p�z þ 1

2
u2�x

�
� 2eoð�bÞ2=3h: (11)

The energy scale is much larger than for conventional
orbits though smaller than in graphene [2], so the VO2

trilayer may display an integer quantum Hall effect at
elevated temperature as does graphene [18].
A scalar equation for the eigenvalues can be obtained

from h2. Introducing the operator Q ¼ pþ iu2=2, the
eigenvalues of h2 are QyQ and QQy, giving the mathe-
matical problem

QyQ�nðuÞ �
�
� d2

du2
þ 1

4
u4 � u

�
�nðuÞ ¼ "2n�nðuÞ:

(12)

The equation for QQy has the opposite sign of the linear
term, with identical eigenvalues and eigenfunctions related
by inversion. Note that every eigenfunction of h is also an
eigenfunction of h2, and that although the potential is

negative in the interval (0, 41=3), the eigenvalues �2n must
be non-negative.
We have obtained the eigenvalues both by precise nu-

merical solution and by WKB approximation, finding that
the latter is an excellent approximation. Initially neglecting
the linear term in the potential, the WKB condition [19]

Z ffiffi
2

p
�1=2n

� ffiffi
2

p
�1=2n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2n � 1

4
u4

s
du ¼

�
nþ 1

2

�
� (13)

can be solved to give the WKB eigenvalues for the quartic
potential as

FIG. 2 (color online). Plot showing the Fermi surfaces for
electron doping that derive from the low-energy excitation
spectra of the semi-Dirac point at the ��M direction in the
kx-ky plane of the square Brillouin zone.
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�2n ¼
�
3

ffiffiffiffi
�

2

r
�ð34Þ
�ð14Þ

�
4=3

�
nþ 1

2

�
4=3 ¼ 1:3765

�
nþ 1

2

�
4=3

:

(14)

The linear perturbation corrects the eigenvalues only to
second order, which is significant only for the ground state
(�0:74 versus the numerical solution of 0.59). The WKB
error is less than 0.01 for the first excited state and gets
successively smaller for higher eigenvalues. We see then
that the semi-Dirac system has eigenvalues in a magnetic

field which scale as B2=3 and increase as ðnþ 1
2Þ2=3 as n

gets large. Both aspects lie between the behaviors for
conventional Landau levels (linear in B, proportional the

nþ 1
2 ) and the Dirac point behavior (proportional to

ffiffiffiffiffiffiffi
Bn

p
),

as might have been anticipated. Some low-lying eigenval-
ues of h2 are shown in Fig. 3 against the potential well.
Note that there is no zero-energy solution as in the gra-
phene problem.

Another way in which Dirac spectra can arise on a
square-lattice can be motivated in terms of the model of
Bernevig et al. [7] for HgTe quantum wells. In their model,
the two bands crossing each other have s and p characters,
respectively. Thus, the interband hopping term changes
sign under reflection. This can lead to a ( sinkx þ i sinky)

coupling between the bands. Note that in this model, only a
single Dirac point can occur, and it must be at k ¼ 0, when
the two bands touch each other at that point. In contrast, in
the models discussed here, there are four symmetry related
semi-Dirac (or anisotropic Dirac) points whose location
can vary continuously along the symmetry axis (1,1), with
changes in band parameters. A feature unique (so far) to
theVO2 trilayer system is that point Fermi surface arises in
a half-metallic ferromagnetic system where time-reversal
symmetry is broken. Applications of the VO2 trilayer and

related semi-Dirac point systems may provide unusual
spintronics characteristics and applications.
In conclusion, we have developed a tight-binding model

description of the semi-Dirac and anisotropic Dirac spectra
relevant to VO2-TiO2 multilayer systems. Our tight-
binding model contains nothing unconventional, indicating
that semi-Dirac and anisotropic point systems are not as
rare as has been assumed. The low-energy characteristics
of the semi-Dirac point are intermediate between those of
zero-gap (massive) semiconductors and Dirac (massless)
point systems. The study of such oxide nanoheterostruc-
tures has only just begun and they clearly promise a
number of diverse electronic structures and novel phases
of matter.
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Note added in proof.—Recently, we became aware of

two very different systems from ours where semi-Dirac
spectra also arise [20].
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FIG. 3. Potential energy function for the one-dimensional
Schrödinger equation and the resulting quantized energy levels
"2n of h2. The lowest numerical vales of the three energy

eigenvalues "n ¼ þ ffiffiffiffiffiffi
"2n

p
are provided.
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