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Measurement of Local Dissipation Scales in Turbulent Pipe Flow
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Local dissipation scales are a manifestation of the intermittent small-scale nature of turbulence. We
report the first experimental evaluation of the distribution of local dissipation scales in turbulent pipe flows
for a range of Reynolds numbers: 2.4 X 10* = Re,, = 7.0 X 10*. Our measurements at the nearly
isotropic pipe center line and within the anisotropic logarithmic layer show excellent agreement with
distributions that were previously calculated from numerical simulations of homogeneous isotropic box
turbulence and with those predicted by theory. The reported results suggest a universality of the smallest-
scale fluctuations around the classical Kolmogorov dissipation length.
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The dissipation of turbulent kinetic energy is driven by
fluctuations of velocity gradients whose amplitudes can
locally and instantaneously greatly exceed their mean
value, resulting in spatially intermittent regions of high
rates of turbulent dissipation within a turbulent flow field
[1,2]. The statistical mean of the turbulent kinetic energy
dissipation rate equals the average flux of energy from the
energy-containing large-scale eddies down to the smallest
ones in the case of statistically stationary turbulent fluid
motion [3]. In the classical theory of turbulence, this small-
scale end of the turbulent cascade is then prescribed by the
Kolmogorov dissipation scale mg which is derived as
nx = v3/*/{e)'/*, where v is the kinematic viscosity of
the fluid and (e) is the mean of the energy dissipation rate
field which is given by €(x, 1) = (v/2)(d;u; + 9;u;)>. But
is mg the smallest scale in a turbulent flow? The
Kolmogorov dissipation length contains the mean dissipa-
tion rate (€) and does not consider the strongly intermittent
nature of €(x, ). It seems therefore natural to capture these
fluctuations in a dissipation scale definition and to refine
the notion of one mean dissipation length to that of a whole
continuum of local dissipation scales. The finest of those
scales will then be associated with the steepest velocity
gradients or, alternatively, with the highest-amplitude
shear and vorticity events in turbulence. This was done
first within the multifractal formalism and demonstrated
that local scales below 7y will exist [4—7]. An alternative
approach to such a continuum of dissipation scales was
suggested by Yakhot [8,9]. When connecting a local scale
n and the velocity increment across that scale §,u =
lu(x + 1) — u(x)|, the following relation:

Néu = v (D

was obtained from the Navier-Stokes equations of fluid
motion by a so-called point-splitting technique. Put into
another perspective, a local Reynolds number obeying this
scale and velocity as their characteristic amplitudes will be
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Re, = 16,u/v = O(1). Such a Reynolds number is then
also associated with fluid motion at the crossover scales
between the inertial cascade range and the viscous dissi-
pation range.

The probability density function (PDF) of the local
dissipation scales Q(n) contains scales larger and smaller
than the classical Kolmogorov dissipation length and can
be calculated analytically on the basis of these ideas [9].
The analytic result was found recently to be in good
agreement with a direct calculation from high-resolution
numerical simulation data of three-dimensional homoge-
neous isotropic box turbulence [10,11]. The numerical
simulations in Ref. [10] were conducted for relatively
low Taylor-microscale Reynolds numbers [14 = Re, =

151, where Re, = u,A/v, A = 2(15vu’?)/{€) and the
standard deviation of the turbulent velocity component is
u'] lacking even traces of inertial range. Still the scaling of
moments of velocity gradients with a Reynolds number
agreed with the predictions which are obtained when using
the scaling exponents of inertial range structure functions
for high-Reynolds number flows. This somewhat unex-
pected result suggested that the existence of a well-
developed inertial range might not be essential for achiev-
ing an asymptotic regime of the small-scale gradient
statistics.

In this Letter, we want to advance these ideas into two
directions. We report the first experimental confirmation of
the local dissipation scale concept in a laboratory flow.
Furthermore, we demonstrate the robustness of the concept
beyond the idealized situation of homogeneous isotropic
box turbulence. The flow at hand is a turbulent pipe flow in
which a mean shear and thus an inhomogeneous (radial)
direction are present. Interestingly, we can also report that
the monitored dissipation scale distributions at the nearly
isotropic pipe center line and in the strongly anisotropic
logarithmic layer are almost identical for the range of
Reynolds numbers that is spanned by the experiment.
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Additionally, they are in very good agreement with those of
the numerical simulations [11] and the analytical result [9].
Our experiments span a Reynolds number range of 76 =
Re, = 214.

Description of the pipe flow experiment.—The experi-
ments were conducted using the Princeton University/
ONR Superpipe [12], which consists of a closed return-
pressure vessel containing a long test pipe downstream of
flow-conditioning and heat-exchanging sections. The cur-
rent set of measurements was performed using air at room
temperature and atmospheric pressure. The test section
used during these experiments consisted of a commercial
steel pipe [13] with an average inner radius of R =
64.9 mm and an overall length of 200D. Experiments
were performed over an interval of pipe flow Reynolds
numbers (based on pipe diameter D and area averaged
velocity Up) of 24X 10*<Rep = UgD/v =
7.0 X 10*. As detailed in Refs. [12,13], over this
Reynolds number range, the flow at the test section of
the pipe was fully developed, smooth walled turbulent
pipe flow.

Velocity measurements of streamwise velocity U, were
performed with a single sensor hot-wire probe 2.5 um in
diameter and having a sensing length of / = 0.5 mm. The
wire was operated at an overheat ratio of 1.8. Analog
output from the anemometer was low-pass filtered at half
the sample frequency using an external filter before being
digitized using a 16-bit simultaneous sample and hold
analog to digital board. The sampling rate was altered
between 100 and 200 kHz in order to maximize the tem-
poral resolution while not exceeding the measured fre-
quency response of the probe. Data were sampled for
30 min continuously. During this period, the flow tempera-
ture was found to remain relatively constant, changing by
less than 1 °C.

Hot-wire probe calibrations were performed at the pipe
center line using a Pitot-probe/wall pressure tap combina-
tion. Calibrations were performed before and after each
30 min measurement. Data sets where voltage drift was
observed were discarded.

Measurements were performed at two positions, the first
located at the pipe center line and the second within the
logarithmic layer at a distance from the wall of y = 0.1R.
The flow conditions for each measurement are provided in
Tables I and II for the y/R = 1 and y/R = 0.1 measure-
ments, respectively.

Confidence limits of the measurements.—When resolv-
ing the small-scale structures of turbulence using hot-wire
anemometry, the limitation imposed by the finite sensor
length of the probe is an important consideration.
Insufficient spatial resolution will filter the energy at scales
smaller than the probe. For the current measurements, the
probe sensor length was of the order of the Kolmogorov
scale with a maximum of [ = 4ng. Although it has been
observed that the energy spectrum can be well resolved for

TABLE L. Experiment conditions for measurements performed
at y/R = 1. U, is the time averaged streamwise velocity.
ReD ReL RCA l_]x Mﬁc L Nk <E>
(m/s) (m/s) (m) (mm) (m*/s?)

24000 230 76 33 0.12
28000 290 87 39 0.15
35000 340 92 49 0.17
44000 440 106 6.0 0.21
52000 560 116 72 0.25
60000 700 124 83 0.29
70000 780 135 95 0.33

0.029 047 0.07
0.029 040 0.13
0.029 035 0.21
0.030 0.31 0.39
0.033  0.27 0.62
0.036 0.25 0.90
0.036 0.22 1.31

turbulence scales up to 0.05/ [14], the impact of spatial
filtering on the instantaneous velocity is not well under-
stood; thus, full confidence can be given only for measure-
ments of 7 for scales larger than /.

The scaled one-dimensional energy spectra ¢(k,) are
plotted in Fig. 1 for the center line, y/R = 1.0, and in the
logarithmic layer, y/R = 0.1. Streamwise wave number k,
was estimated from frequency f using Taylor’s frozen flow
hypothesis through 277f/U,. As can be observed in Fig. 1,
the signal to noise ratio fell below 1 (as indicated by the
inflection point in the measured spectra) at wave numbers
larger than the Kolmogorov range for all data sets. Note
that the appearance of this noise is consistent with the so-
called f? noise typically observed in constant temperature
anemometry.

An isotropic estimate of the mean dissipation rate can be
found through integration of the one-dimensional dissipa-
tion spectrum

(&) = 150 fo " 2 (k,)dk,. e

The measured dissipation spectra, shown in Fig. 2, indicate
that the range of wave numbers over which dissipation
occurred were well resolved during these measurements.
Thus, the measured PDFs are expected to be largely in-
sensitive to the influence of spatial filtering and instrumen-
tation noise. The insensitivity of the results to the changing
Reynolds number and 7 in Fig. 3 confirm this expecta-
tion. Full confidence, however, can be given only to results
for values of 7 larger than the scales at which these effects
are expected to occur. These minimum confidence limits
are quantified in Table III.

TABLE II. Experiment conditions for measurements per-
formed at y/R = 0.1.
Rep, Re;, Re, U, u', L Nk (€)
(m/s) (m/s) (m) (mm) (m’/s?)
35000 1300 155 34 041 0.047 0.19 24
52000 1900 185 5.1 059 0.050 0.15 6.8

70000 2700 214 6.7 0.76  0.055 0.13 14
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FIG. 1. One-dimensional turbulence energy spectra measured
gy sp

for all cases. The legend indicates whether the data are obtained
at the center line y/R = 1.0 or in the logarithmic layer y/R =
0.1.

Distribution of local dissipation scales.—The PDF of 7,
Q(m), can be calculated by a saddle-point approximation
[9] within the range 0 < n < L as

0(n) = :
e anlblog(L/m)]72
00 B _{log[\/ixReL(77/L)“+1]}2
xf,wdxe"p[ o 2blog(L/7) ]

3)

where a = 0.383, b = 0.0166 [11], L is the integral length
scale of the turbulence, and Re; = {|u,(x + L) —
u, (x)|)V2L /v as used in Ref. [11]. The PDF was calcu-
lated from each velocity time series using the following
procedure. First, the velocity difference Au(Ar) = |U (1 +
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FIG. 2. Measured dissipation spectrum for all cases. Data are
the same as in Fig. 1.
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FIG. 3. Measured PDFs of the local dissipation scales for all
Reynolds numbers. Results from the logarithmic layer y/R =
0.1 are shifted vertically by a decade for clarity.

At) — U,(¢)] was calculated at each discrete time . Next,
the value Au(Af)U,At/v was calculated, and the instances
where the result was between 0.9 and 2 were counted as
occurrences of dissipation at a scale n = AtU,. This pro-
cess was repeated for all Azup to AtU, = L. Finally, Q(n)
was found from the count of occurrences by normalizing
such that [ Q(n)dn = 1.

The results are shown in Fig. 3, normalized by the value
1o = LRe; %" [11], which is very close to ng. At each
measurement location there was excellent collapse of
0(n/my) for all measured Reynolds numbers. This
Reynolds number independence indicates that the high-
wave number end of the universal equilibrium range could
establish universality at lower Reynolds numbers than
previously expected. This appears to be true even though
the scale separation between the energy-containing eddies

TABLE III. Minimum values of 7 which can be considered
fully free of effects of n; sensor spatial resolution and 7, signal
noise (defined using the wave number where the signal to noise
ratio exceeded 10). Scales are also shown normalized by n, =
LReD™,

Re, 1,(mm) /Mo 1 (mm) n¢/Mo
76 0.5 1.0 1.4 2.9
87 0.5 1.2 1.4 3.5
92 0.5 1.4 1.5 4.1

106 0.5 1.6 1.3 4.2

116 0.5 1.7 1.3 4.7

124 0.5 1.9 14 5.2

135 0.5 2.0 1.4 5.8

155 0.5 2.2 1.0 4.5

185 0.5 2.8 0.7 3.8

214 0.5 3.2 0.5 3.0
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FIG. 4. Comparison among Q(n/mn,) measured at pipe center
line y/R = 1.0, measured at y/R = 0.1, the numerical results of
Ref. [11], and the theoretical distribution of Ref. [9].

and dissipation scales is still relatively small and before
even the establishment of an inertial subrange (see Fig. 1).

Direct comparison is made in Fig. 4 between Q(n/7,)
measured in the nearly isotropic turbulence at the pipe
center line and the anisotropic log layer. Here one can
see nearly identical distributions at all but the smallest
values of 7/m,, where a slightly increased probability
was observed at y/R = 0.1. Such a good agreement in-
dicates that the structure of turbulence at the largest scales
has little effect on the organization of the smallest scales.

Comparison is also made in Fig. 4 among the present
experimental results, the numerical results of Ref. [11], and
the theoretical distribution of Ref. [9]. There is a very good
agreement between the numerical and experimental results
(at the center line) and also in the tails of the PDF at large
7. The deviations from the theoretical distribution on both
sides can be due to the limits of a saddle-point approxima-
tion for the evaluation of the Mellin transform in Ref. [9].
The agreement between the numerical and experimental
results supports the concept of the universality of the
distribution of the dissipation scales.

As mentioned above, Fig. 4 displays a further property.
The left tail of the PDF Q(n/mn,) becomes slightly fatter
for the logarithmic layer in comparison to that of the center
line. Since we found that the data for different Reynolds
numbers collapse well (see Fig. 3), this property could be
interpreted as a statistical fingerprint of bursting structures.
So-called packets of hairpins have been observed recently
in the logarithmic layer of other wall flows [15]. They were
found to increase the level of small-scale intermittency
which would be in accordance with the slightly smaller
measured local dissipation scales. However, a clear disen-
tanglement requires two things: further data records at
higher Re combined with experiments in different flows.

Conclusions.—The probability density function of the
local dissipation scales was measured in a turbulent pipe
flow over a range of Reynolds numbers at the pipe center
line and in the logarithmic layer. For the first time, we
measured this probability density function experimentally
in a turbulent shear flow. Our results indicate that the
distribution is basically independent of both the Reynolds
number and the degree of anisotropy of the large scales of
turbulence. We find a very good agreement with the nu-
merical simulations and the theory. This robustness of the
results with respect to flow type (or degree of anisotropy)
suggests a universality of the smallest-scale fluctuations in
turbulence. One could thus indeed conclude that the turbu-
lent dynamics at the finest scales is already in an asymp-
totic state, although the Reynolds numbers remain
moderate and an inertial cascade range is absent or very
small. It is well known that to observe inertial range
statistics in wall-bounded flows requires large Reynolds
numbers [16]. This fact adds further value to the present
study which establishes a connection between shear flow
and isotropic turbulence at their small scales.
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