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The self-similar decay of energy in a turbulent flow is studied in direct numerical simulations with and
without rotation. Two initial conditions are considered: one nonhelical (mirror symmetric) and one with
maximal helicity. While in the absence of rotation the energy in the helical and nonhelical cases decays
with the same rate, in rotating flows the helicity content has a major impact on the decay rate. These
differences are associated with differences in the energy and helicity cascades when rotation is present.
The properties of the structures in the flow at late times are also discussed.
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Turbulence is ubiquitous in nature, and many turbu-
lent flows are also rotating. The effect of rotation be-
comes important when the Rossby (Ro) number (the ratio
of the convective to the Coriolis acceleration) is suffi-
ciently small. Midlatitude synoptic scales in the atmo-
sphere, stellar convective regions, and turbo machinery
are examples of such flows. Helicity (alignment of the
velocity and the vorticity) is also important for many
processes in astrophysical, geophysical, and engineering
flows. As an example, helical flows were proposed as the
reason for the stability of rotating convective thunder-
storms [1].

Studies of helical homogeneous and isotropic turbulence
(HIT) [2,3] showed that the helicity and the energy are
transferred toward smaller scales with constant fluxes.
Moreover, it was observed that the energy scaling
(Kolmogorov’s law) was unchanged by helicity. As a re-
sult, helicity is expected to globally arrest the energy
decay, but not to change its self-similar decay rate.
Nonbhelical rotating turbulence (RT) has been studied in
detail [4], but because of the similarities between the
helical and nonhelical cases in HIT, not much attention
has been paid to helicity in the rotating case.

The lack of detailed studies of helical RT is remarkable
considering the relevance of helicity and rotation in many
astrophysical and geophysical processes. In this work, we
study the effect of rotation and of helicity upon the self-
similar decay of energy in turbulent flows. Even in HIT, the
law for the decay rate of energy is a matter of debate [5]. It
is known that it depends on properties of the infrared
energy spectrum (i.e., the spectrum at scales larger than
the energy-containing scale), and may depend on other
statistical properties of the initial conditions. As a result,
in this Letter we will consider only two flows with the same
infrared spectrum and the same energy decay rate in the
absence of rotation, and study how the presence of helicity
and rotation changes their decay. A different decay is found
for helical RT in numerical simulations. The results are
interpreted in terms of how the energy and helicity cas-
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cades are modified by rotation, and a phenomenological
theory is discussed.

The numerical simulations solve the Navier-Stokes
equations for an incompressible fluid in a rotating frame,

du+wXu+20xu=-VP+rVu (1)

where u is the velocity field (V- u = 0), w = V X u is the
vorticity, P is the total pressure (modified by the centrifu-
gal term), and v is the kinematic viscosity. We chose the
rotation axis to be in the z direction, & = 2, with () the
rotation frequency. Our integration domain is a periodic
box of length 277. Two sets of runs were done at resolutions
of 2563 (set A) and 5123 grid points (set B) using a deal-
iased pseudospectral code (see Table I).

To simulate systems with different amounts of initial
relative helicity (h = H/{|u||w|), where H = (u - w) is
the flow net helicity), two flows were considered as initial
conditions: the Taylor-Green (TG) flow [6] and the Arnold-
Beltrami-Childress (ABC) flow [7]. The TG flow is non-
helical, and has zero energy in the k, = 0 modes, whose
amplification observed in the rotating cases (see below) is
thus only due to a cascade process. The TG flow was
chosen for its importance in hydrodynamics; it was origi-
nally motivated as an initial condition which leads to rapid
development of small spatial scales. It also mimics the

TABLE I. Parameters used in the simulations: kinematic vis-
cosity v, rotation rate (), Reynolds number (Re), Rossby number
(Ro), micro-Rossby number (Ro“), Ekman number Ej, initial
relative helicity &, and at the time of maximum dissipation ¢
(h*). The values of Re, Ro, Ro®, and E|, are given at 1.

Run v ) Re Ro Ro” E, h h*
Al 15X1073 0 450 --- --- 0 0
A2 1.5X1073 0 600 -+ --- 0.95 0.34
A3 1.5X1073 4 550 012 128 22X107* 0 0
A4 15X1073 4 830 0.083 0.8 1.0X107* 095 0.65
Bl 7X1074% 4 1100 0.12 1.82 1.1 X107™% 0 0
B2 7X107* 4 1750 0.083 1.15 4.7 X 107> 0.95 0.44
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von Karman flows between two counterrotating disks used
in several experiments. The ABC flow is an eigenfunction
of the curl operator and as a result has maximum helicity. It
was used as a paradigmatic example to study helical flows
in the atmosphere [1]. Both flows develop, after a short
time, an infrared energy spectrum proportional to k?; this is
important to ensure we can compare the decay rates of both
flows.

The simulations were started using a superposition of
these flows from wave numbers k& = 4-14 with initial
energy spectrum ~k *. Runs with zero relative helicity
have a superposition of TG flows, and runs with & = 0.95
have a superposition of ABC flows. The runs were ex-
tended for over 40 turnover times, and the dissipative range
was properly resolved with the ratio k,,/ky,, < 0.85 at all
times, where k,, is the dissipation wave number and kp,y
the maximum resolved wave number. Times in the figures
are expressed in units of the turnover time at t =0, T =
L/U, where L = 27 /ky = 27r/4 and U = 1 are the initial
integral scale and rms velocity.

Several Reynolds (Re), Rossby, and Ekman numbers can
be defined for the runs. We will consider here the Reynolds
number based on the integral scale Re = UL/v, and the
accompanying Rossby number Ro = U/(2Q)L). The inte-
gral scale is defined as L = 2 [ E(k)k'dk/E, where
E(k) is the isotropic energy spectrum and E is the total
energy. The Ekman number is then defined as E;, =
Ro/Re. At t = 0 runs in set A have Re = 1050 and runs
in set B have Re = 2250. At the same time the Rossby
number is Ro = 0.08 for runs A3, A4, and B1-B2; the
initial Ekman number is then E; = 7.6 X 1073 in runs A3
and A4, and E;, = 3.6 X 1073 in runs B1-B2. Values of the
controlling parameters for each run at the time of maxi-
mum dissipation #* are given in Table I.

It is also convenient to introduce a microscale Rossby
number as Ro® = w/(20) [8]. It can be interpreted as the
ratio of the convective to the Coriolis acceleration at the
Taylor scale, a scale characteristic of the turbulent inertial
range. In order for anisotropies to develop in the simula-
tions, the Rossby number must be small enough for the
rotation to affect the turbulence, but the micro-Rossby Ro®
must be larger than one for scrambling effects of inertial
waves not to completely damp the nonlinear terms (which
leads to a pure exponential viscous decay) [9]. We are in-
terested in simulations with moderate rotation rates to en-
sure Ro < I and with Re large enough to have enough scale
separation between the energy-containing and the dissipa-
tive scale. Note in Table I how Ro and Ro“ are 1 order of
magnitude apart in all runs at time ¢*. This difference is
sustained in time during the self-similar energy decay.

Figure 1 shows the time history of the energy and ens-
trophy in runs Al, A2, B1-B2. In all runs there is a self-
similar decay after the time 7*. Runs A3 and A4 (not
shown) decay, respectively, as runs B1 and B2, although
the time span of the self-similar stage is shorter. In both
runs with Q = 0, the energy decays as ~¢ 2. As will be
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FIG. 1. Energy evolution for runs A1l (solid curve), A2 (dotted

curve), B1 (dashed curve), and B2 (dot-dashed curve). Runs Al
and A2 have () = 0 and decay with the same rate independently
of the helicity content. When rotation is turned on the decay rates
differ. Inset: Enstrophy evolution for runs Al and A2.

discussed later, this exponent corresponds to the decay of a
flow with constant integral length [10].

Helicity in run A2 does not seem to affect the self-
similar decay, as predicted in [3]. This is in good agree-
ment with the fact that helicity does not change the spectral
index of the energy in HIT [2]. However, the self-similar
decay in run A2 starts at a later time, as previously reported
in Ref. [11]. This is associated with the slowdown in the
generation of small scales in helical flows [12], which
results in a longer time to reach the maximum of dissipa-
tion in run A2 (see the inset of Fig. 1).

In runs with rotation (A3, A4, B1, and B2), a transient is
also observed before ¢*. Then, self-similar decays with
different power laws for the energy are found in all runs.
Runs A3 and B1 have a decay near 71 [13,14], while the
runs with maximum helicity (A4 and B2) follow a decay
slightly faster than ¢~'/3. Contrary to HIT, we can appre-
ciate now how helicity truly affects the self-similar decay.
As will be shown later, in RT the energy decays between
t~"and r~'/3, with r~! corresponding to nonhelical RT and
=13 to maximally helical RT, a case difficult to obtain in
the simulations.

The time evolution is accompanied by a change in the
energy spectrum; see Fig. 2(a). While the runs without
rotation show at r* and during the self-similar decay a
spectrum consistent with Kolmogorov scaling in both the
energy and the helicity, runs with rotation show different
slopes. Run B1 (which has a larger scale separation than
run A3) shows for r = r* an isotropic energy spectrum
compatible with k=2 (the anisotropic spectrum is also
compatible with ~k7?) [15,16]. The energy spectrum in
run B2 is slightly steeper than in run B1, while the helicity
spectrum is shallower than the energy spectrum. The prod-
uct of both spectra is consistent with a k~# law, as predicted
using phenomenology in [16]. Indeed, the spectrum of
relative helicity measured in B2 is ~k~*6, while in helical
HIT the relative helicity scales as k~!. As a result, there is
an excess of helicity on the small scales in run B2, which
results in quenching of nonlinearities and a further reduced
energy dissipation rate and decay. It is worth mentioning
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(a) Isotropic energy spectrum compensated by k=2 for runs B1 (dot-dashed curve) and B2 (solid curve) near the peak of

dissipation. The helical flow shows a steeper spectrum. A k2 slope (corresponding to k~'/2 in the compensated plot) is shown as a
reference). Inset: Isotropic energy spectrum for run B2 at ¢ = 8 (thin curve) and ¢ = 30 (thick curve). (b) Energy flux I1(k) (thin curve)
and helicity flux 2 (k) (thick curve) across scales, for run B2 at r = 5 (solid curve) and ¢ = 13 (dashed curve); (k) is normalized by
the initial energy-containing wave number k, = 4. Inset: Energy flux I1(k) for run B1 at ¢ = 2 (solid curve) and 7 = 11 (dashed curve).
Positive flux indicates a direct cascade, and negative flux indicates an inverse cascade.

that spectral slopes are better measured in forced runs,
where a turbulent steady state can be reached (see [16]).
However, as can be seen from Fig. 2(a), near the peak of
dissipation the spectra of runs B1 and B2 clearly differ.
Note ¢* is the time when turbulence fully develops and the
largest scale separation is attained. During the subsequent
self-similar decay, the slopes do not change significantly.

In the runs with rotation, a change in the small-scale
spectrum is observed at t = 20. As energy piles up at the
largest available scale in the box and columnlike structures
form in the velocity, the small-scale energy spectrum be-
comes steeper. This is accompanied by a decrease in the
decay rate of the energy (see Fig. 1). This process is
reminiscent of the change observed in the free decay of
two-dimensional turbulence, when the coalescence of
large-scale vortices at late times leads to a steeper energy
spectrum and a change in the self-similar decay [17].

Runs Al and A2 develop direct energy fluxes toward
small scales while the rotating nonhelical runs (A3 and B1)
show both a direct and an inverse energy cascade [see the
inset of Fig. 2(b)]. In the helical runs [Fig. 2(b)], at t = 2
we observe maximum positive flux of energy and helicity
toward smaller scales, evidencing both energy and helicity
having a direct cascade. However, the helicity flux is larger
than the direct energy flux. Later, an inverse cascade of
energy can be clearly identified from the negative energy
flux at large scales. At ¢t = 13, the coexistence of both an
inverse cascade of energy and direct cascades of energy
and helicity is observed.

Although Figs. 2(a) and 2(b) show the isotropic spectras
and fluxes, the flows in the rotating case are anisotropic.
Most of the energy in the spectra is in modes perpendicular
to the axis of rotation, and the anisotropic spectrum E(k )
and flux II(k;) look similar to the ones previously dis-
cussed. We present instead some global indications of the
development of anisotropies. Figure 3 shows the ratio of
the energy in perpendicular modes (i.e., modes with k, =
0) to the total energy in runs Bl and B2. Differences at
early times are due to different initial conditions. However,
it can be seen that both curves grow monotonically to a

value near 1, indicating that the flows evolve toward an-
isotropic states as the energy is transferred to perpendicular
modes [4]. A measure of small-scale anisotropy is given by
the Shebalin angle

_ K Bk

S KR E(ky)
Its evolution in runs B1 and B2 can be seen in the inset of
Fig. 3. It grows monotonically although in run B2 it reaches
amaximum at r = 12 and then seems to saturate. A similar
behavior is observed for L (not shown) which again grows
monotonically in B1 but reaches a maximum in B2 at
approximately the same time. In all cases, tan’6 > 2,
which corresponds to anisotropic flows.

The increase of the correlation lengths, together with the
growth of E(k, = 0)/E and of tan?#, speaks of anisotrop-
ization of the flows. This tendency towards two-
dimensionalization is confirmed by exploring the flows in
real space. Figure 4 shows visualizations of the rms vor-
ticity with superimposed velocity field lines for runs A3
and A4 at late times (f = 45). In both cases, a strong
anisotropy is observed with large-scale columnlike struc-
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FIG. 3. Ratio of the energy in modes with k; = O to the total
energy in runs B1 (dashed curve) and B2 (solid curve). Despite
the different initial conditions, the curves grow monotonically to
1, showing a transfer of energy to perpendicular modes.
Inset: Time evolution of the Shebalin angle for the same runs.
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FIG. 4 (color online). Visualizations of the rms vorticity for
t = 45 with superimposed velocity field lines for runs A3 (right)
and A4 (left). Cuts of v, and H on a plane perpendicular to ) are
shown. The color table gives the amplitudes normalized to the
maximum of each quantity.

tures in the vorticity (similar structures are observed if
energy density is visualized instead). However, a signifi-
cant difference in the geometry of the flow in the columns
is observed between runs A3 and A4 . While the flow in the
columns of the helical run is strongly helical (the flow goes
either up or down in the entire column, thus giving helical
velocity field lines), the columns of the nonhelical run have
no net helicity (the flow goes up and down inside the same
column). This indicates that even at late times the proper-
ties of the emerging structures in rotating flows depend on
the initial helicity content.

The distinct evolution in the free decay of helical and
nonhelical flows when rotation is present can be under-
stood in terms of a simple phenomenological theory. For
HIT we make use of the classical Kolmogorov phenome-
nology which leads to the well-known energy spectrum
E(k) ~ €2/3k=5/3, where € represents the energy dissipa-
tion rate. From the Navier-Stokes equation it is easy to
show that for a freely decaying flow dE/dt~ E*?/L,
which leads to a self-similar decay law E(f) ~ ¢~ 2 if the
integral scale is assumed constant [5,10].

In nonhelical RT, it is often assumed that E(k) ~
€'/2Q02k=2 (we use the isotropic wave number k,
although the arguments can be generalized to the aniso-
tropic case replacing k by k | ). This spectrum was observed
in 5123 simulations of forced flows [15], obtained from
closures [14], and derived from phenomenological argu-
ments assuming the inertial waves slow down the energy
cascade [18]. Using this spectrum it follows that dE/dt ~
(E/L)? resulting in a decay E(t) ~ ¢t~ ! (the assumption of
constant L is justified since k in the initial conditions is
close to the minimum wave number k;, = 1; see [13]).
This decay is consistent with experiments and simulations
at lower resolution [11,13,14].

The case of helical RT differs from the previous two. In
this case, the direct transfer is dominated by the helicity
cascade. Writing the helicity flux as 8 ~ h;/(Q77), where
h; is the helicity at the scale [ and 7; the eddie turnover

time, leads to a spectra E(k) ~ k™" and H(k) ~ k"%,
where n = 5/2 for the case of maximum helicity [16].
Using E(1) ~ €*QPk=5/2, dimensional analysis leads to
E(k) ~ €'/*Q5/4k=5/2 (see [16] also for forced runs).
From dE/dt ~ €/L, then dE/dt ~ E*/L"", which for con-
stant L leads to E(f) ~ t~'/3 (note that for rotating flows
with initial helicity between zero and the maximum, the
decay rate is between —1 and —1/3; a run with relative
helicity & = 0.4 was done to verify this).

The differences between HIT and RT when helicity is
present open new directions in the study of rotating flows
(the development of new subgrid models that take into
account these differences being an example). This can
also be the starting point to elucidate the role helicity plays
in the decay of rotating flows in nature [1].
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